1887
Volume 54, Issue 5
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

The azimuthally varying non‐hyperbolic moveout of P‐waves in orthorhombic media can provide valuable information for characterization of fractured reservoirs and seismic processing. Here, we present a technique to invert long‐spread, wide‐azimuth P‐wave data for the orientation of the vertical symmetry planes and five key moveout parameters: the symmetry‐plane NMO velocities, (1) and (2), and the anellipticity parameters, η(1), η(2) and η(3). The inversion algorithm is based on a coherence operator that computes the semblance for the full range of offsets and azimuths using a generalized version of the Alkhalifah–Tsvankin non‐hyperbolic moveout equation.

The moveout equation provides a close approximation to the reflection traveltimes in layered anisotropic media with a uniform orientation of the vertical symmetry planes. Numerical tests on noise‐contaminated data for a single orthorhombic layer show that the best‐constrained parameters are the azimuth ϕ of one of the symmetry planes and the velocities (1) and (2), while the resolution in η(1) and η(2) is somewhat compromised by the trade‐off between the quadratic and quartic moveout terms. The largest uncertainty is observed in the parameter η(3), which influences only long‐spread moveout in off‐symmetry directions. For stratified orthorhombic models with symmetry‐plane azimuths, the moveout equation has to be modified by allowing the orientation of the effective NMO ellipse to differ from the principal azimuthal direction of the effective quartic moveout term.

The algorithm was successfully tested on wide‐azimuth P‐wave reflections recorded at the Weyburn Field in Canada. Taking azimuthal anisotropy into account increased the semblance values for most long‐offset reflection events in the overburden, which indicates that fracturing is not limited to the reservoir level. The inverted symmetry‐plane directions are close to the azimuths of the off‐trend fracture sets determined from borehole data and shear‐wave splitting analysis. The effective moveout parameters estimated by our algorithm provide input for P‐wave time imaging and geometrical‐spreading correction in layered orthorhombic media.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2006.00559.x
2006-09-05
2024-04-26
Loading full text...

Full text loading...

References

  1. AdamL., Van WijkK. and DavisT.2003. Multi‐level 3D VSP travel time inversion in VTI media, Weyburn field, Canada. 73rd SEG Meeting, Dallas , USA , Expanded Abstracts, 753–756.
  2. Al‐DajaniA. and TsvankinI.1998. Non‐hyperbolic reflection moveout for horizontal transverse isotropy. Geophysics63, 1738–1753.
    [Google Scholar]
  3. Al‐DajaniA., TsvankinI. and ToksözM.N.1998. Non‐hyperbolic reflection moveout for azimuthally anisotropic media. 68th SEG Meeting, New Orleans , USA , Expanded Abstracts, 1479–1482.
  4. AlkhalifahT.1997. Velocity analysis using non‐hyperbolic moveout in transversely isotropic media. Geophysics62, 1839–1854.
    [Google Scholar]
  5. AlkhalifahT. and TsvankinI.1995. Velocity analysis for transversely isotropic media. Geophysics60, 1550–1566.
    [Google Scholar]
  6. Van Der BaanM.2004. Processing of anisotropic data in the τ − p domain: I – Geometric spreading and moveout corrections. Geophysics69, 719–730.
    [Google Scholar]
  7. BakulinA., GrechkaV. and TsvankinI.2000. Estimation of fracture parameters from reflection seismic data–Part II: Fractured models with orthorhombic symmetry. Geophysics65, 1803–1817.
    [Google Scholar]
  8. CardonaR.2002. Fluid substitution theories and multicomponent seismic characterization of fractured reservoirs . PhD Thesis, Colorado School of Mines .
  9. DoumaH. and CalvertA.2006. Non‐hyperbolic moveout analysis in VTI media using rational interpolation. Geophysics71, D59–D71.
    [Google Scholar]
  10. FomelS.2004. On anelliptic approximations for qP velocities in VTI media. Geophysical Prospecting52, 247–259.
    [Google Scholar]
  11. GajewskiD. and PšenčíkI.1987. Computation of high frequency seismic wavefields in 3‐D laterally inhomogeneous anisotropic media. Geophysical Journal of the Royal Astronomical Society91, 383–412.
    [Google Scholar]
  12. GrechkaV., PechA. and TsvankinI.2002. Multicomponent stacking‐velocity tomography for transversely isotropic media. Geophysics67, 1564–1574.
    [Google Scholar]
  13. GrechkaV. and TsvankinI.1998a. 3‐D description of normal moveout in anisotropic inhomogeneous media. Geophysics63, 1079–1092.
    [Google Scholar]
  14. GrechkaV. and TsvankinI.1998b. Feasibility of non‐hyperbolic moveout inversion in transversely isotropic media. Geophysics63, 957–969.
    [Google Scholar]
  15. GrechkaV. and TsvankinI.1999a. 3‐D moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case study. Geophysics64, 1202–1218.
    [Google Scholar]
  16. GrechkaV. and TsvankinI.1999b. 3‐D moveout velocity analysis and parameter estimation for orthorhombic media. Geophysics64, 820–837.
    [Google Scholar]
  17. GrechkaV., TsvankinI. and CohenJ.K.1999. Generalized Dix equation and analytic treatment of normal‐moveout velocity for anisotropic media. Geophysical Prospecting47, 117–148.
    [Google Scholar]
  18. JennerE.2001. Azimuthal anisotropy of 3‐D compressional wave seismic data, Weyburn Field, Saskatchewan, Canada . PhD. Thesis, Colorado School of Mines.
  19. PechA. and TsvankinI.2004. Quartic moveout coefficient for a dipping azimuthally anisotropic layer. Geophysics69, 699–707.
    [Google Scholar]
  20. PechA., TsvankinI. and GrechkaV.2003. Quartic moveout coefficient: 3D description and application to tilted TI media. Geophysics68, 1600–1610.
    [Google Scholar]
  21. PressW.H., TeukolskyS.A., VetterlingW.T. and FlanneryB.P.1987. Numerical Recipes in C . Cambridge University press.
    [Google Scholar]
  22. SayersC.M. and EbromD.A.1997. Seismic traveltime analysis for azimuthally anisotropic media: Theory and experiment. Geophysics36, 1570–1582.
    [Google Scholar]
  23. SchoenbergM. and HelbigK.1997. Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth. Geophysics62, 1954–1974.
    [Google Scholar]
  24. StovasA. and UrsinB.2004. New travel‐time approximations for a transversely anisotropic medium. Journal of Geophysical Engineering1, 128–133.
    [Google Scholar]
  25. ThomsenL.1986. Weak elastic anisotropy. Geophysics51, 1954–1966.
    [Google Scholar]
  26. ToldiJ., AlkhalifahT., BerthetP., ArnaudJ., WilliamsonP. and ConcheB.1999. Case study of estimation of anisotropy. The Leading Edge18, 588–594.
    [Google Scholar]
  27. TsvankinI.1997. Anisotropic parameters and P‐wave velocity for orthorhombic media. Geophysics62, 1292–1309.
    [Google Scholar]
  28. TsvankinI.2005. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media (2nd edition). Elsevier Science Publishing Co.
    [Google Scholar]
  29. TsvankinI. and ThomsenL.1994. Non‐hyperbolic reflection moveout in anisotropic media. Geophysics59, 1290–1304.
    [Google Scholar]
  30. XuX. and TsvankinI.2004. Geometrical‐spreading correction for P‐waves in layered azimuthally anisotropic media. 74th SEG Meeting, Denver , USA , Expanded Abstracts, 111–114.
  31. XuX., TsvankinI. and PechA.2005. Geometrical spreading of P‐waves in horizontally layered, azimuthally anisotropic media. Geophysics70, D43–D53.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2006.00559.x
Loading
/content/journals/10.1111/j.1365-2478.2006.00559.x
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error