1887
Volume 60, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In geological materials, anisotropy may arise due to different mechanisms and can be found at different scales. Neglecting anisotropy in traveltime tomographic reconstruction leads to artefacts that can obscure important subsurface features. In this paper, a geostatistical tomography algorithm to invert cross‐hole traveltime data in elliptically anisotropic media is presented. The advantages of geostatistical tomography are that the solution is regularized by the covariance of the model parameters, that known model parameters can be used as constraints and fitted exactly or within a prescribed variance and that stochastic simulations can be performed to appraise the variability of the solution space. The benefits of the algorithm to image anisotropic media are illustrated by two examples using synthetic georadar data and real seismic data. The first example confirms suspected electromagnetic anisotropy in the vadose zone caused by relatively rapid water content variations with respect to wavelength at georadar frequencies. The second presents how sonic log data can be used to constrain the inversion of cross‐well seismic data and how geostatistical simulations can be used to infer parameter uncertainty. Results of both examples show that considering anisotropy yields a better fit to the data at high ray angles and reduces reconstruction artefacts.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2011.01047.x
2012-02-14
2024-04-29
Loading full text...

Full text loading...

References

  1. AnnanA.P.2005. GPR methods for hydrogeological studies. In: Hydrogeophysics (eds. Y.Rubin and S.S.Hubbard ), chap. 7, 185–213. Springer.
    [Google Scholar]
  2. AvsethP., MukerjiT. and MavkoG.2005. Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk . Cambridge University Press.
    [Google Scholar]
  3. BackusG.E.1962. Long‐wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research 67, 4427–4440. doi:10.1029/JZ067i011p04427.
    [Google Scholar]
  4. BauerK., HaberlandC., PrattR., HouF., MedioliB. and WeberM.2005a. Ray‐based cross‐well tomography for P‐wave velocity, anisotropy, and attenuation structure around the JAPEX/JNOC/GSC et al. Mallik 5L‐38 gas hydrate production research well. In: Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada (eds. S.Dallimore and T.Collet ), 21pp. Geological Survey of Canada.
    [Google Scholar]
  5. BauerK., PrattR., WeberM., RybergT., HaberlandC. and ShimizuS.2005b. Mallik 2002 cross‐well seismic experiment: project design, data acquisition, and modelling studies. In: Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada (eds. S.Dallimore and T.Collet ), 14 pp. Geological Survey of Canada.
    [Google Scholar]
  6. BergmannT., RobertssonJ.O.A. and HolligerK.1998. Finite‐difference modeling of electromagnetic wave propagation in dispersive and attenuating media. Geophysics 63, 856–867. doi:10.1190/1.1444396.
    [Google Scholar]
  7. CarcioneJ.M.2007. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, vol. 38 of Handbook of Geophysical Exploration: Seismic Exploration . Elsevier, 2 nd edn.
    [Google Scholar]
  8. ChanC.Y. and KnightR.J.1999. Determining water content and saturation from dielectric measurements in layered materials. Water Resources Research 35, 85–93. doi:10.1029/1998WR900039.
    [Google Scholar]
  9. ChilèsJ.P. and DelfinerP.1999. Geostatistics: Modeling Spatial Uncertainty . John Wiley & Sons.
    [Google Scholar]
  10. CollettT., LewisR. and DallimoreS.2005. JAPEX/JNOC/GSC et al. Mallik 5L‐38 gas hydrate production research well downhole well‐log and core montages. In: Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada (eds. S.Dallimore and T.Collet ), 21 pp. Geological Survey of Canada.
    [Google Scholar]
  11. DallimoreS.R. and CollettT.S.2005. Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program, Mackenzie Delta, Northwest Territories, Canada. Bulletin 585, Geological Survey of Canada. doi:10.4095/220702.
  12. Fernández MartínezJ.L. and Pedruelo GonzálezL.M.2009. Anisotropic mean traveltime curves: A method to estimate anisotropic parameters from 2D transmission tomographic data. Mathematical Geology 41, 163–192. doi:10.1007/s11004‐008‐9202‐4.
    [Google Scholar]
  13. FichtnerA.2011. Full Seismic Waveform Modelling and Inversion . Advances in Geophysical and Environmental Mechanics and Mathematics. Springer.
    [Google Scholar]
  14. FreezeA.R. and CherryJ.A.1979. Groundwater . Prentice Hall.
    [Google Scholar]
  15. van GenuchtenM.T.1980. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44, 892–898. doi:10.2136/sssaj1980.03615995004400050002x.
    [Google Scholar]
  16. GirouxB., BoucheddaA. and ChouteauM.2009. Assisted traveltime picking of crosshole GPR data. Geophysics 74, J35–J48. doi:10.1190/1.3141002.
    [Google Scholar]
  17. GirouxB. and ChouteauM.2008. A hydrogeophysical synthetic model generator. Computers and Geosciences 34, 1080–1092. doi:10.1016/j.cageo.2007.11.006.
    [Google Scholar]
  18. GirouxB., GloaguenE. and ChouteauM.2007. bh_tomo– A Matlab borehole georadar 2D tomography package. Computers and Geosciences 33, 126–137. doi:10.1016/j.cageo.2006.05.014.
    [Google Scholar]
  19. GloaguenE., MarcotteD., ChouteauM. and PerroudH.2005. Borehole radar velocity inversion using cokriging and cosimulation. Journal of Applied Geophysics 57, 242–259. doi:10.1016/j.jappgeo.2005.01.001.
    [Google Scholar]
  20. GloaguenE., MarcotteD., GirouxB., Dubreuil‐BoisclairC., ChouteauM. and AubertinM.2007. Stochastic borehole radar velocity and attenuation tomographies using cokriging and cosimulation. Journal of Applied Geophysics 62, 141–157. doi:10.1016/j.jappgeo.2006.10.001.
    [Google Scholar]
  21. GoovaertsP.1997. Geostatistics for Natural Resources Evaluation . Oxford University Press.
    [Google Scholar]
  22. GruberT. and GreenhalghS.A.1998. Precision analysis of first‐break times in grid models. Geophysics 63, 1062–1065. doi:10.1190/1.1444384.
    [Google Scholar]
  23. HansenT.M., LoomsM.C. and NielsenL.2008. Inferring the subsurface structural covariance model using cross‐borehole ground penetrating radar tomography. Vadose Zone Journal 7, 249–262. doi:10.2136/vzj2006.0144.
    [Google Scholar]
  24. HollenderF.1999. Interprétation de la distorsion des signaux géoradar propagés et réfléchis – Développement d’une tomographie par bandes de fréquence . Ph.D. thesis, Institut National Polytechnique de Grenoble .
    [Google Scholar]
  25. IrvingJ.D. and KnightR.J.2003. Saturation‐dependent anisotropy in borehole radar data. In: SAGEEP 2003 Symposium on the Application of Geophysics to Engineering and Environmental Problems . Environmental and Engineering Geophysical Society, San Antonio , TX .
  26. JungY. and KimJ.1999. Application of anisotropic georadar tomography to monitor rock physical property changes. Journal of Environmental and Engineering Geophysics 4, 87–92. doi:10.4133/JEEG4.2.87.
    [Google Scholar]
  27. Le RavalecM., NoetingerB. and HuL.Y.2000. The FFT moving average (FFT‐MA) generator: An efficient numerical method for generating and conditioning Gaussian simulations. Mathematical Geology 32, 701–723. doi:10.1023/A:1007542406333.
    [Google Scholar]
  28. MarcotteD.1991. Cokriging with matlab. Computers and Geosciences 17, 1265–1280. doi:10.1016/0098‐3004(91)90028‐C.
    [Google Scholar]
  29. MavkoG., MukerjiT. and DvorkinJ.2009. The Rock Physics Handbook . Cambridge University Press, 2 edn.
    [Google Scholar]
  30. MichelenaR.J., MuirF. and HarrisJ.M.1993. Anisotropic traveltime tomography. Geophysical Prospecting 41, 381–412. doi:10.1111/j.1365‐2478.1993.tb00576.x.
    [Google Scholar]
  31. NegiJ. and SarafP.1989. Anisotropy in Geoelectromagnetism, vol. 28 of Methods in Geochemistry and Geophysics . Elsevier.
    [Google Scholar]
  32. PrattR.G. and ChapmanC.H.1992. Traveltime tomography in anisotropic media—II Application. Geophysical Journal International 109, 20–37. doi:10.1111/j.1365‐246X.1992.tb00076.x.
    [Google Scholar]
  33. PrattR.G. and SamsM.S.1996. Reconciliation of crosshole seismic velocities with well information in a layered sedimentary environment. Geophysics 61, 549–560. doi:10.1190/1.1443981.
    [Google Scholar]
  34. PrattR.G. and ShippR.M.1999. Seismic waveform inversion in the frequency domain, part 2: Fault delineation in sediments using crosshole data. Geophysics 64, 902–914. doi:10.1190/1.1444598.
    [Google Scholar]
  35. RogisterY. and SlawinskiM.A.2005. Analytic solution of ray‐tracing equations for a linearly inhomogeneous and elliptically anisotropic velocity model. Geophysics 70, D37–D41. doi:10.1190/1.2049347.
    [Google Scholar]
  36. SchoenbergM. and SayersC.M.1995. Seismic anisotropy of fractured rock. Geophysics 60, 204–211. doi:10.1190/1.1443748.
    [Google Scholar]
  37. SchönJ.H.2004. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics, vol. 18 of Handbook of Geophysical Exploration ‐ Seismic Exploration . Elsevier, 1 edn.
    [Google Scholar]
  38. SheriffR.E.2002. Encyclopedic Dictionary of Applied Geophysics . SEG, 4 th edn.
    [Google Scholar]
  39. ThomsenL.1986. Weak elastic anisotropy. Geophysics 51, 1954–1966. doi:10.1190/1.1442051.
    [Google Scholar]
  40. TronickeJ. and KnollM.D.2005. Vertical radar profiling: Influence of survey geometry on first‐arrival traveltimes and amplitudes. Journal of Applied Geophysics 57, 179–191. doi:10.1016/j.jappgeo.2004.11.001.
    [Google Scholar]
  41. TsvankinI.2005. Seismic Signatures and Analysis of Reflection Data in Anisotropic Media, vol. 29 of Handbook of Geophysical Exploration: Seismic Exploration . Elsevier.
    [Google Scholar]
  42. TsvankinI., GaiserJ., GrechkaV., van der BaanM. and ThomsenL.2010. Seismic anisotropy in exploration and reservoir characterization: An overview. Geophysics 75, 75A15–75A29. doi:10.1190/1.3481775.
    [Google Scholar]
  43. VascoD.W., PetersonJr.J.E. and LeeK.H.1997. Ground‐penetrating radar velocity tomography in heterogeneous and anisotropic media. Geophysics 62, 1758–1773. doi:10.1190/1.1444276.
    [Google Scholar]
  44. VernikL. and LiuX.1997. Velocity anisotropy in shales: A petrophysical study. Geophysics 62, 521–532. doi:10.1190/1.1444162.
    [Google Scholar]
  45. WangZ.2002. Seismic anisotropy in sedimentary rocks, part 2: Laboratory data. Geophysics 67, 1423–1440. doi:10.1190/1.1512743.
    [Google Scholar]
  46. WangZ., BovikA.C., SheikhH.R. and SimoncelliE.P.2004. Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13, 600–612. doi:10.1109/TIP.2003.819861.
    [Google Scholar]
  47. WilliamsonP.R.1998. On resolution and uniqueness in anisotropic crosshole traveltime tomography. Geophysics 63, 1184–1189. doi:10.1190/1.1444418.
    [Google Scholar]
  48. WilliamsonP.R., SamsM.S. and WorthingtonM.H.1993. Crosshole imaging in anisotropic media. The Leading Edge 12, 19–23. doi:10.1190/1.1436908.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2011.01047.x
Loading
/content/journals/10.1111/j.1365-2478.2011.01047.x
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Anisotropy; Electromagnetics; Inverse problem; Seismics; Tomography

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error