1887
Volume 61, Issue 3
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Carbon capture and storage is a viable greenhouse gas mitigation technology and the Sleipner CO sequestration site in the North Sea is an excellent example. Storage of CO at the Sleipner site requires monitoring over large areas, which can successfully be accomplished with time lapse seismic imaging. One of the main goals of CO storage monitoring is to be able to estimate the volume of the stored CO in the reservoir. This requires a parametrization of the subsurface as exact as possible. Here we use elastic 2D time‐domain full waveform inversion in a time lapse manner to obtain a P‐wave velocity constrain directly in the depth domain for a base line survey in 1994 and two post‐injection surveys in 1999 and 2006. By relating velocity change to free CO saturation, using a rock physics model, we find that at the considered location the aquifer may have been fully saturated in some places in 1999 and 2006.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2012.01072.x
2012-05-02
2024-04-29
Loading full text...

Full text loading...

References

  1. ArtsR.2000a. SACS Internal report. Notes on seismic data. TNO. http://www.sintef.no.
  2. ArtsR., ChadwickA., Eike, O., ThibeauS. and NoonerS.2008. Ten years experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First Break 26, 65–68.
    [Google Scholar]
  3. ArtsR., ChadwickA., EikenO. and ZweigelP.2003. Interpretation of the 1999 and 2001 time‐lapse seismic data (wp 5.4). SACS report, TNO.
  4. ArtsR., EikenO., ChadwickA., ZweigelP., van der MeerL. and ZinsznerB.2002a. Monitoring of CO2 injected at Sleipner using time‐lapse seismic data. 6th International conference on Greenhouse Gas Control Technologies (GHGT‐6), Kyoto , Japan .
  5. ArtsR., ElsayedR., van der MeerL., EikenO., OstmoS., ChadwickA., KirbyG. and ZinsznerB.2002b. Estimation of the mass of injected CO2 at Sleipner using time‐lapse seismic data. EAGE 64th Conference & Exhibition, Florence , Italy , Expanded Abstracts, H016.
  6. ArtsR.J., ZweigelP. and LotheA.E.2000b. Reservoir geology of the Utsira Sand in the southern Viking graben area – A site for potential CO2 storage. 62nd EAGE Conference & Exhibition, Glasgow , UK , Expanded Abstracts, B020.
  7. BaklidA., KorbølR. and OwenG.1996. Sleipner vest CO2 disposal, CO2 injection into a shallow underground aquifer. SPE Annual Technical Conference and Exhibition, Denver , Colorado , USA , paper 36600, 269–277.
  8. BecqueyM., LucetN. and HuguetF.2010. Feasibility of Seismic Monitoring at a Potential CO2 Injection Test Site in the Paris Basin. Oil & Gas Science and Technology – Rev. IFP 65, 589–595.
    [Google Scholar]
  9. BensonS. and CookP.2005. Special report on Carbon dioxide Capture and Storage, Chapter 5: Underground geological storage. Intergovernmental Panel on Climate Change, http://www.ipcc.ch.
  10. BoaitF., WhiteN., ChadwickA., NoyD. and BickleM.2011. Layer spreading and dimming within the CO2 plume at the Sleipner Field in the North Sea. Energy Procedia 4, 3254–3261.
    [Google Scholar]
  11. BorgosH., DahlG.V., HalvorsenK.A., IversenT., LygrenM., NickelM. et al . 2002. SACS2 Final Report, GECO.
  12. BrieA., PampuriF., MarsalaA.F. and MeazzaO.1995. Shear sonic interpretation in gas‐bearing sands. SPE Annual Technical Conference, nr 30595, 701–710.
  13. CarcioneJ.M., PicottiS., GeiD. and RossiG.2006. Physics and seismic modeling for monitoring CO2 storage. Pure and Applied Geophysics 163, 175–207.
    [Google Scholar]
  14. CastagnaJ.P., BatzleM.L. and EastwoodR.L.1985. Relationships between compressional‐wave and shear‐wave velocities in elastic silicate rocks. Geophysics 50, 571–581.
    [Google Scholar]
  15. CausseE., MitteR. and UrsinB.1999. Preconditioning of full‐waveform inversion in viscoacoustic media. Geophysics 64, 130–145.
    [Google Scholar]
  16. ChadwickR.A., ArtsR. and EikenO.2005. 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. In: Petroleum Geology: North‐West Europe and Global Perspectives – Proceedings of the Sixth Petroleum Geology Conference (eds A.Doré and B.A.Vining ), pp. 1385–1399. Geological Society of London.
  17. ChadwickR.A., HollowayS., KirbyG.A., GregersenU. and JohannessenP.N.2000. The Utsira Sand, Central North Sea – An assessment of its potential for regional CO2 disposal. 5th International Conference on Greenhouse Gas Control Technologies, Cairns , Australia .
  18. ClochardV., DelépineN., LabatK. and RicarteP.2009. Post‐stack versus pre‐stack stratigraphic inversion for CO2 monitoring purposes: A case study for the saline aquifer of the Sleipner field. SEG International Exposition and 79th Annual Meeting, Expanded Abstracts, 2417–2421.
  19. ClochardV., DelépineN., LabatK. and RicarteP.2010. CO2 plume imaging using 3D pre‐stack stratigraphic inversion: A case study on the Sleipner field. First Break 28, 91–96.
    [Google Scholar]
  20. CraseE., PicaA., NobleM., McDonaldJ. and TarantolaA.1990. Robust elastic nonlinear waveform inversion: Application to real data. Geophysics 55, 527–538.
    [Google Scholar]
  21. DelépineN., ClochardV., LabatK., RicarteP. and Le BrasC.2009. Stratigraphic Inversion for CO2 Monitoring Purposes – A case study for the saline aquifer Sleipner Field. 71st EAGE Conference & Exhibition, Amsterdam , The Netherlands , Expanded Abstracts, R015.
  22. DelépineN., LabatK., ClochardV., RicarteP. and Le BrasC.2010. 4D Joint Pre‐stack Seismic Stratigraphic Inversion of the Sleipner‐CO2 Case. 72nd EAGE Conference & Exhibition, Barcelona, Spain , Expanded Abstracts, K009.
  23. DvorkinJ., MoosD., PackwoodJ.L. and NurA.M.1999. Identifying patchy saturation from well logs. Geophysics 64, 1756–1759.
    [Google Scholar]
  24. EikenO., BrevikI., ArtsA., LindebergE. and FagervikK.2000. Seismic monitoring of CO2 injected into a marine aquifer. SEG International Exposition and 70th Annual Meeting, Expanded Abstracts, RC‐8.2.
  25. FreudenreichY.2002. P‐ and S‐wave velocity estimation from full wavefield inversion of wide‐aperture seismic data . PhD. thesis, University of Cambridge .
    [Google Scholar]
  26. GardnerG.H.F., GardnerL.W. and GregoryA.R.1974. Formation Velocity and Density: The Diagnostic Basis for Stratigraphic Traps. Geophysics 39, 770–780.
    [Google Scholar]
  27. GassmannF.1951. Über die Elastizität poröser Medien. Vierteljahresschrift der Naturforschenden Gesellschaft in Zürich 96, 1–23.
    [Google Scholar]
  28. GhaderiA. and LandrøM.2009. Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time‐lapse seismic data. Geophysics 74, 17–28.
    [Google Scholar]
  29. GosseletA. and SinghS.C.2007. CO2 thin beds imaging using full waveform inversion: Applications to synthetic and real time‐lapse data. 69th EAGE Conference & Exhibition, Expanded Abstracts, London , UK , E014.
  30. GosseletA. and SinghS.2008. 2D Full wave form inversion in time‐lapse mode: CO2 quantification at Sleipner. 70th EAGE Conference & Exhibition, Rome , Italy , Expanded Abstracts, 69–73.
  31. HamiltonE.L.1978. Sound velocity‐density relations in sea floor sediments and rocks. Journal of the Acoustical Society of America 63, 366–377.
    [Google Scholar]
  32. HollowayS.2005. Underground sequestration of carbon dioxide – A viable greenhouse gas mitigation option. Energy 30, 2318–2333.
    [Google Scholar]
  33. HollowayS., ChadwickA., LindebergE., Czernichowski‐LauriolI. and ArtsR.2004. Best Practice Manual from SACS – Saline Aquifer CO2 Storage Project, SACS consortium. http://www.co2store.org/
  34. HoltT., JensenJ. ‐I. and LindebergE.1995. Underground storage of CO2 in aquifers and oil reservoirs. Energy Conversion and Management. Proceedings of the Second International Conference on Carbon Dioxide Removal 36 (6–9), 535–538.
    [Google Scholar]
  35. JannaneM., BeydounW., CraseE., CaoD., KorenZ., LandaE. et al . 1989. Wavelengths of earth structures that can be resolved from seismic reflection data. Geophysics 54, 906–910.
    [Google Scholar]
  36. KallweitR.S. and WoodL.C.1982. The limits of resolution of zero‐phase wavelets. Geophysics 47, 1035–1046.
    [Google Scholar]
  37. KnightR., DvorkinJ. and NurA.1998. Acoustic signatures of partial saturation. Geophysics 63, 132–138.
    [Google Scholar]
  38. LevanderA.1988. Fourth‐order finite‐difference P‐SV seismograms. Geophysics 53, 1425–1436.
    [Google Scholar]
  39. MavkoG. and MukerjiT.1998. Bounds on low‐frequency seismic velocities in partially saturated rocks. Geophysics 63, 918–924.
    [Google Scholar]
  40. MavkoG., MukerjiT. and DvorkinJ.2009. The Rock Physics Handbook. Tools for Seismic Analysis of Porous Media. Cambridge University Press, Cambridge ( UK ). ISBN 9780521861366.
    [Google Scholar]
  41. MoraP.1987. Nonlinear two‐dimensional elastic inversion of multioffset seismic data. Geophysics 52, 1211–1228.
    [Google Scholar]
  42. MosegaardK. and TarantolaA.1995. Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research 100, 12431–12447.
    [Google Scholar]
  43. NeufeldJ.A. and HuppertH.E.2009. Modelling carbon dioxide sequestration in layered strata. Journal of Fluid Mechanics 625, 353–370.
    [Google Scholar]
  44. NevesF. and SinghS.C.1996. Sensitivity study of seismic refiection/refraction data. Geophysical Journal International 126, 470–476.
    [Google Scholar]
  45. NoonerS.L., EikenO., HermanrudC., SasagawaG.S., StenvoldT. and ZumbergeM.A.2007. Constraints on the in situ density of CO2 within the Utsira formation from time‐lapse sefioor gravity measurements. International Journal of Greenhouse Gas Control 1, 198–214.
    [Google Scholar]
  46. PengD.Y. and RobinsonD.B.1976. A new two‐constant equation of state. Industrial and Engineering Chemistry Fundamentals 15, 59–64.
    [Google Scholar]
  47. PicaA., DietJ.P. and TarantolaA.1990. Nonlinear inversion of seismic reflection data in a laterally invariant medium. Geophysics 55, 284–292.
    [Google Scholar]
  48. QueißerM. and SinghS.2011. Monitoring of CO2 sequestration at the Sleipner site – Time lapse seismic full waveform inversion versus migrated waveforms. SEG International Exposition and 81st Annual Meeting, Expanded Abstracts, 2613–2618.
  49. RamírezA.C. and LewisW.R.2010. Regularization and full‐waveform inversion: A two step approach. SEG International Exposition and 80th Annual Meeting, Expanded Abstracts, 2773–2778.
  50. SenguptaM.2000. Integrating rock physics and flow simulation to reduce uncertainties in seismic reservoir monitoring . PhD thesis, Stanford University.
    [Google Scholar]
  51. ShippR.M. and SinghS.C.2002. Two‐dimensional full wave field inversion of wide‐aperture marine seismic streamer data. Geophysical Journal International 151, 325–344.
    [Google Scholar]
  52. SinghS.C., MinshullT.A. and SpenceG.D.1993. Velocity Structure of a Gas Hydrate Reflector. Science 260, 204–206.
    [Google Scholar]
  53. SkovT., BorgosH.G., HalvorsenK.Å., RandenT. and SønnelandL.2002. Monitoring and characterization of a CO2 storage site. SEG International Exposition and 72nd Annual Meeting, Expanded Abstracts, 1669–1673.
  54. TarantolaA.1984. Inversion of seismic refiection data in the acoustic approximation. Geophysics 49, 1259–1266.
    [Google Scholar]
  55. TarantolaA.1986. A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51, 1893–1903.
    [Google Scholar]
  56. TarantolaA.2006. Popper, Bayes and the inverse problem. Nature Physics 2, 492–494.
    [Google Scholar]
  57. WashingtonW.M., KnuttiR., MeehlG.A., TengH., TebaldiC., LawrenceD. et al . 2009. How much climate change can be avoided by mitigation? Geophysical Research Letters 36, L08703, 5 pp., doi:10.1029/2008GL037074.
    [Google Scholar]
  58. WrightI.W.2007. The In Salah Project: CO2 Storage Monitoring and Verification. Paper presented at Carbon Sequestration Leadership Forum 2007 International Projects Workshop, Paris , France .
  59. XuH.2006. Calculation of CO2 acoustic properties using Batzle‐Wang equations. Geophysics 71, F21–F23.
    [Google Scholar]
  60. ZweigelP., ArtsR., LotheA.E. and LindebergE.2004. Reservoir geology of the Utsira Formation at the first industrial‐scale under‐ground CO2 storage site (Sleipner area, North Sea). In: Geological storage of CO2 for emissions reduction . (eds S.Baines and R.Worden ), pp. 165–180. Geological Society, London, Special Publication.
    [Google Scholar]
  61. ZweigelP., HamborgM., ArtsR., LotheA.E., ArtsR. and TømmeråsA.2000. Prediction of migration of CO2 injected into an underground depository: Reservoir geology and migration modelling in the Sleipner case (North Sea). 5th International Conference on Greenhouse Gas Control Technologies, Cairns , Australia .
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2012.01072.x
Loading
/content/journals/10.1111/j.1365-2478.2012.01072.x
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Carbon capture and storage; Full waveform; Rock physics; Seismic; Time lapse

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error