1887
Volume 36 Number 10
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Abstract

Using geophysical methods to locate unknown caves is a common practice. Here, we present a new code for cave modelling from the residual gravity anomaly. To test its effectiveness, the code has been applied to the well-known Zé de Braga cave, located in Mira de Aire-Santo Antonio Range within the Maciço Calcareo Estremeho (Portugal). This cave has a vertical entry (sinkhole) and develops in an L-form shape at 10–15 m depth within the Jurassic limestones of the massif. A 2D grid of resistivity and microgravity data were acquired over the cave. The cavity is highlighted by high resistivity values (∼7500 ohm·m) and minimal values surrounded by maxima on the residual gravity map. The new gravity modelling code divides the sub-surface into blocks with densities of 0 g/cm3 (hole) to represent the cave, and 2.67 g/cm3 for the environment (limestones). The calculated 3D model of the cave is very close to the real morphology, dimensions and position, and is comparable to the inverted resistivities.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.2018004
2018-10-01
2024-04-27
Loading full text...

Full text loading...

References

  1. Angelucci, D.E., Boschian, G., Fontanals, M., Pedrotti, A., Vergès
    and J.M. [2009]. Shepherds and karst: the use of caves and rock-shelters in the Mediterranean region during the Neolithic.World Archaeology, 41, 191–214.
    [Google Scholar]
  2. Ballard, R.F., Cuenod, Y. and Jenni, J.P.
    [1982]. Detection of karst cavities by geophysical methods.Bulletin of the International Association of Engineering Geology, 26–27, 153–157.
    [Google Scholar]
  3. Bozzo, E., Lombardo, S. and Merlanti, F.
    [1996]. Geophysical studies applied to near-surface karst structures: the dolines.Annals of geophysics, 39, 23–38.
    [Google Scholar]
  4. Butler, D.K.
    [1984]. Microgravimetric and gravity gradient techniques for detection of subsurface cavities.Geophysics, 49, 1084–1096.
    [Google Scholar]
  5. Canais, F. and Fernandes, J.
    [1999]. Lapas e Algares da Serra de Santo António – Planalto de Santo António/Maciço Calcário Estremenho (Portugal). SubTerra - Grupo de Espeleología.
    [Google Scholar]
  6. Carvalho, J., Midões, C., Machado, S., Sampaio, J., Costa, A. and Lisboa, V.
    [2011]. Maciço Calcário Estremenho Caracterização da Situação de Referência. Relatorio interno, 1–42.
    [Google Scholar]
  7. Chamon, N. and Dobereiner, L.
    [1988]. An example of the use of geophysical methods for the investigation of a cavern in sandstones.Bulletin of the International Association of Engineering Geology, 38, 37–43.
    [Google Scholar]
  8. Chico, R.J.
    [1964]. Detection of caves by gravimetry.International Journal of Speleology, 1, 101–108.
    [Google Scholar]
  9. Colley, G.C.
    [1963]. The detection of caves by gravity measurements.Geophysical Prospecting, 11, 1–9.
    [Google Scholar]
  10. Cook, J.C.
    [1965]. Seismic mapping of underground cavities using reflection amplitudes.Geophysics, 30, 527–538.
    [Google Scholar]
  11. Cook, K.L. and Van Nostrand, R.G.
    [1954]. Interpretation of resistivity data over filled sinks.Geophysics, 19, 761–790.
    [Google Scholar]
  12. Gómez-Ortiz, D. and Martín-Crespo, T.
    [2012]. Assessing the risk of subsidence of a sinkhole collapse using ground penetrating radar and electrical resistivity tomography.Engineering Geology, 149–150, 1–12.
    [Google Scholar]
  13. Hammer, S.I.
    [1939]. Terrain corrections for gravimeters stations.Geophysics, 4, 184–194.
    [Google Scholar]
  14. [1982]. Critique of terrain corrections for gravity stations.Geophysics, 47, 839–840.
    [Google Scholar]
  15. Loke, M.H.
    [2018]. Tutorial: 2-D and 3-D Electrical Imaging Surveys.Geotomo Software, Malaysia.
    [Google Scholar]
  16. Majzoub, A.F., Stafford, K.W., Brown, W.A. and Ehrhart, J.T.
    [2017]. Characterization and Delineation of Gypsum Karst Geohazards Using 2D Electrical Resistivity Tomography in Culberson County, Texas, USA.Journal of Environmental and Engineering Geophysics, 22, 411–420.
    [Google Scholar]
  17. Martínez-Moreno, F.J.
    [2015]. Detection and characterization of karstic caves: integration of geological and geophysical techniques (PhD). Departamento de Geodinámica. Universidad de Granada, 320.
    [Google Scholar]
  18. Martínez-Moreno, F.J., Galindo-Zaldívar, J., Pedrera, A., González-Cas-tillo, L., Ruano, P., Calaforra, J.M. and Guirado, E.
    [2015]. Detecting gypsum caves with microgravity and ERT under soil water content variations (Sorbas, SE Spain). Engineering Geology, 193, 38–48.
    [Google Scholar]
  19. Martínez-Moreno, F.J., Galindo-Zaldívar, J., Pedrera, A., Teixido, T., Ruano, P., Peña, J.A., González-Castillo, L., Ruiz-Constán, A., López-Chicano, M. and Martín-Rosales, W.
    [2014]. Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain).Journal of Applied Geophysics, 107, 149–162.
    [Google Scholar]
  20. Martínez-Moreno, F.J., Pedrera, A., Ruano, P., Galindo-Zaldívar, J., Martos-Rosillo, S., González-Castillo, L., Sánchez-Úbeda, J.P. and Marín-Lechado, C.
    [2013]. Combined microgravity, electrical resistivity tomography and induced polarization to detect deeply buried caves: Algaidilla cave (Southern Spain).Engineering Geology, 162, 67–78.
    [Google Scholar]
  21. Martínez-Pagán, P., Gómez-Ortiz, D., Martín-Crespo, T., Manteca, J.I. and Rosique, M.
    [2013]. The electrical resistivity tomography method in the detection of shallow mining cavities. A case study on the Victoria Cave, Cartagena (SE Spain).Engineering Geology, 156, 1–10.
    [Google Scholar]
  22. Metwaly, M. and AlFouzan, F.
    [2013]. Application of 2-D geoelectrical resistivity tomography for subsurface cavity detection in the eastern part of Saudi Arabia.Geoscience Frontiers, 4, 469–476.
    [Google Scholar]
  23. Mochales, T., Casas, A.M., Pueyo, E.L., Pueyo, O., Román, M.T., Pocoví, A., Soriano, M.A. and Ansón, D.
    [2008]. Detection of underground cavities by combining gravity, magnetic and ground penetrating radar surveys: a case study from the Zaragoza area, NE Spain.Environmental Geology, 53, 1067–1077.
    [Google Scholar]
  24. Pedley, R.C., Busby, J.P. and Dabek, Z.K.
    [1993]. GRAVMAG user manual–interactive 2.5 D gravity and magnetic modelling. British Geological Survey, Technical Report WK/93/26/R, 73.
    [Google Scholar]
  25. Proença Cunha, P. and Pena dos Reis, R.
    [1995]. Cretaceous sedimentary and tectonic evolution of the northern sector of the Lusitanian Basin (Portugal).Cretaceous Research, 16(2), 155–170. DOI:https://doi.org/10.1006/cres.1995.1013.
    [Google Scholar]
  26. Ribeiro, A., Antunes, M.T., Ferreira, M.P., Rocha, R.B., Soares, A.F., Zbyszewski, G., Moitinho de Almeida, F., De Carvalho, D. and Mon-teiro, J.H.
    [1979]. Introducción á la géologie générale du Portugal.
    [Google Scholar]
  27. Rodrigues, M.
    [2015]. Relatório de Projeto-Definição de manchas de cobertura associadas ao afastamento das estações permanentes no Território Nacional.
    [Google Scholar]
  28. Smith, D.L.
    [1986]. Application of the pole-dipole resistivity technique to the detection of solution cavities beneath highways.Geophysics, 51, 833–837.
    [Google Scholar]
  29. Steeples, D.W., Knapp, R.W. and McElwee, C.D.
    [1986]. Seismic reflection investigations of sinkholes Interstate Highway 70 in Kansas.Geophysics, 51, 295–301.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.2018004
Loading
/content/journals/10.3997/1365-2397.2018004
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error