1887
Volume 37 Number 11
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397

Abstract

Summary

Acquisition and processing of wide azimuth large offset and high fold (WA/LO/HF) 3D seismic data in the Aguada Federal concession is presented. Preserved amplitude/azimuthal workflows (e.g. anisotropy analysis, pre-stack elastic inversion, reservoir characterization) facilitate the quantitative interpretation.

Layering, fracture distribution and stress cause measurable velocity anisotropy. Well ties and residual normal move-out help to determine the anisotropy parameters (η, ε and δ). Non-hyperbolic 4th-order move-out improves flattening of gather reflections. Sinusoidal residual move-out on common-offset, common-azimuth gathers is diagnostic for HTI anisotropy. Azimuthal Residual Move-out (ARMO) on gathers improves the seismic quality. Anisotropic 3D tomographic raytracing and velocity model building increase the depth imaging efficiency. The new processing better focuses the seismic reflections and boosts higher frequencies. The migration repositions the energy in depth and the mismatch of geologic markers at the well locations is reduced.

Higher fidelity datasets are better suited for seismic inversion, reservoir characterization and fracture prediction. The anisotropic workflow serves to estimate Vp, Vs, density, total organic contents, Young’s modulus E and pore pressure. Delineation of Vaca Muerta sweet spots is thus made possible. Seismic anisotropy analysis allows optimization of the well landing point, selection of well spacing and a preferred trajectory orientation.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.2019036
2019-11-01
2024-04-26
Loading full text...

Full text loading...

References

  1. Acevedo, H. and Bande, A.
    [2018]. Characterisation of Lower Vaca Muerta at Fortin de Piedra in Neuquén Basin, Argentina.The Leading Edge, 37 (4), 242–320, doi:10.1190/tle37040255.
    https://doi.org/10.1190/tle37040255 [Google Scholar]
  2. Alkhalifah, T.
    [2014]. Full waveform inversion in an anisotropic world; where are the parameters hiding?EAGE Publications, Houten, The Netherlands.
    [Google Scholar]
  3. Buijs, H., Ponce, J. and Veeken, P.
    [2019]. Validation of flow capacity and state-of-stress models in unconventional reservoirs by the implementation of numerical models of diagnostic fracture injection tests.The Leading Edge, 38 (6), 306–314.
    [Google Scholar]
  4. Butler, E., Mueller, S. and Davis, T.L.
    [2016]. Application of time-lapse multi-component seismic inversion to characterize pressure and stimulation in the Niobrara and Codell reservoirs, Wattenberg Field, Colorado.First Break, 34 (12), 69–75.
    [Google Scholar]
  5. Convers, C., Davis, T., Hanitzsch, C. and Curia, D.
    [2017]. Rock property prediction for integrated exploration and development, Vaca Muerta formation, Neuquén Basin, Argentina.First Break, 35 (7), 51–57.
    [Google Scholar]
  6. Curia, D., Veeken, P., Zunino, J., DeevK. and PelmanD.
    [2012]. Mul-tifocusing seismic processing to improve poor response areas below basalt layers, Cañadon Asfalto Basin (Argentina).74th EAGE Annual Conference, Expanded Abstracts, P367.
    [Google Scholar]
  7. Curia, D. and Veeken, P.
    [2018]. Seismic inversion and rock physical parameter estimation for an unconventional shale oil play.80th EAGE Annual Conference, Expanded Abstracts.
    [Google Scholar]
  8. Curia, D., Veeken, P., Justo, D. and Alayon, M.
    [2018a]. Anisotropic migration of wide azimuth 3D seismic data for an unconventional shale oil project, Aguada Federal Block, NW Argentina.80th EAGE Annual Conference, Expanded Abstracts.
    [Google Scholar]
  9. Curia, D., Hanitzsch, C., Galikeev, T., Elia, R. and Davis, T.
    [2018b]. Multicomponent 3D-3C data acquisition and processing for characterization of the Vaca Muerta Formation in Neuquén Basin, Argentina.The Leading Edge, 37 (4), 270–274.
    [Google Scholar]
  10. Curia, D., Duncan, P.M., Grealy, M., McKenna, J. and Hill, A.
    [2018c]. Microseismic monitoring of the Vaca Muerta completions in the Neuquén Basin, Argentina.The Leading Edge, 37 (4), 262–269.
    [Google Scholar]
  11. Fantín, M., Tomassini, F.G., Reijenstein, H.M., Lipinski, C., Crousse, L., Cuervo, S. and Vallejo, D.
    [2014]. Vaca Muerta stratigraphy in central Neuquén Basin: Impact on emergent unconventional project.Unconventional Resources Technology Conference (URTeC), Abstracts.
    [Google Scholar]
  12. Hampson, D., Russell, B. and Bankhead, B.
    [2005]. Simultaneous inversion of pre-stack seismic data.CSEG National Convention, Abstract, doi:10.1190/1.2148008.
    https://doi.org/10.1190/1.2148008 [Google Scholar]
  13. Jones, I.F.
    [2010]. An introduction to velocity model building.EAGE publications, Houten, The Netherlands.
    [Google Scholar]
  14. Kietzmann, D.A., Palma, R.M., Riccardi, A.C., Martín-Chivelet, J., and López-Gómez, J.
    , [2014]. Sedimentology and sequence stratigraphy of a Tithonian - Valanginian carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock in the southern Men-doza area of the Neuquén Basin, Argentina.Sedimentary Geology, 302, 64–86.
    [Google Scholar]
  15. Li, X.
    [2008]. An introduction to common offset vector trace gathering.CSEG Recorder, 33 (9), 28–34.
    [Google Scholar]
  16. Liu, E. and Martinez, A.
    [2012]. Seismic fracture characterization. Concepts and practical applications.EAGE Publications, Houten, The Netherlands.
    [Google Scholar]
  17. Maretto, H., Martínez Lampe, J., Rodríguez, L., Berdini, O., Schachner, G., Castellarini, P., Arregui, C., Quinteros, J., Martínez, E., Lasalle, D. and Pecuch, D.
    [2005]. Condiciones de entrampamiento en el sector sur del engolfamiento neuquino. Introducion. VI Congreso de exploración y desarrollo de hidrocarburos, 261–270.
    [Google Scholar]
  18. Mavko, G., Mukerji, T., and Dvorkin, J.
    [2009]. The rock physics handbook: Tools for seismic analysis of porous media.Cambridge University Press.
    [Google Scholar]
  19. Reijenstein, H.M., Posamentier, H.W., Fantin, M., Tomassini, F.G., and Lipinski, C.
    [2014]. Vaca Muerta seismic stratigraphy and geomorphology: regional architectural trends for unconventional exploration.Unconventional Resources Technology Conference (URTeC), Abstracts.
    [Google Scholar]
  20. Sharma, R., Chopra, S., Vernengo, L., Trinchero, E., and Sylwan, C.
    [2015]. Reducing uncertainty in characterization of Vaca Muerta Formation Shale with poststack seismic data.The Leading Edge, 34 (12), 1462–1467.
    [Google Scholar]
  21. Thomson, L.
    [2002]. Understanding seismic anisotropy in exploration and exploitation. Distinguished instructor series, 5, SEG, Tulsa, USA.
    [Google Scholar]
  22. Wojslaw, R., Stein, J. and Langston, T.
    [2012]. 5D Semblance based interpolator in Exploration - Theory and Practice.74th EAGE Annual Conference, Expanded Abstracts.
    [Google Scholar]
  23. Veeken, P.C.H. and Van Moerkerken, B.
    [2013]. Seismic stratigraphy and depositional facies models.EAGE and Elsevier Academic Press, Houten, The Netherlands.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.2019036
Loading
/content/journals/10.3997/1365-2397.2019036
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error