1887
Volume 38, Issue 3
  • ISSN: 0263-5046
  • E-ISSN: 1365-2397
Preview this article:
Zoom in
Zoomout

Interpretational applications of artificial intelligence-based seismic fault delineation, Page 1 of 1

| /docserver/preview/fulltext/fb/38/3/fb2020020-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journals/10.3997/1365-2397.fb2020020
2020-03-01
2020-10-21
Loading full text...

Full text loading...

References

  1. Hale, D.
    [2013]. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images.Geophysics,78, O33–O43.
    [Google Scholar]
  2. Kranz, B., Ormand, C. and Freeman, B.
    [2006]. 3-D Structural Interpretation: Earth, Mind, and Machine.American Association of Petroleum Geologists Memoir.111. Doi: https://doi.org/10.1306/M1111307
    [Google Scholar]
  3. Lowell, J., Szafian, P. and Tessen, N.
    [2019]. Artificial intelligence and seismic interpretation.GEO ExPro, 16 (2), 20–23.
    [Google Scholar]
  4. Marfurt, K. J. and Alves, T.M.
    [2015]. Pitfalls and limitations in seismic attribute interpretation of tectonic features.Interpretation,3 (1), SB5–SB15. Doi: https://doi.org/10.1190/INT-2014-0122.1.
    [Google Scholar]
  5. Marfurt, K.J., Kirlin, R.L., Farmer, S.L. and Bahorich, M.S.
    [1998]. 3-D seismic attributes using a semblance-based coherency algorithm.Geophysics,631150–1165. https://doi.org/10.1190/1.1444415.
    [Google Scholar]
  6. Marfurt, K.J. and Kirlin, R.L.
    [2000]. 3-D broad-band estimates of reflector dip and amplitude.Geophysics,65304–320. https://doi.org/10.1190/1.1444721.
    [Google Scholar]
  7. Marfurt, K.J., Sudhaker, V., Gersztenkorn, A., Crawford, K.D. and Nissen, S.E.
    [1999]. Coherency calculations in the presence of structural dip.Geophysics,64104–111. https://doi.org/10.1190/1.1444508
    [Google Scholar]
  8. McCormack, K.D. and McClay, K.R.
    [2018]. Orthorhombic faulting in the Beagle Sub-basin, North West Shelf, Australia.Special Publications, 476, Geological Society of London, https://doi.org/10.1144/SP476.3.
    [Google Scholar]
  9. Pedersen, S.I., Randen, T., Sonneland, L. and Steen, O.
    [2002]. Automatic fault extraction using artificial ants.SEG Technical Program, Expanded Abstracts, 512–515.
    [Google Scholar]
  10. Pepper, R. and Bejarano, G.
    [2005]. Advances in Seismic Fault Interpretation Automation.Search and Discovery Article, #40169.
    [Google Scholar]
  11. Purves, S. and Baseford, H.
    [2011]. Visualizing geological structure with subtractive colour blending.GCSSEPM, Extended Abstracts.
    [Google Scholar]
  12. Roberts, A.
    [2001]. Curvature attributes and their application to 3D interpreted horizons.First Break, 1985–100. doi:10.1046/j.0263‑5046.2001.00142.x
    https://doi.org/10.1046/j.0263-5046.2001.00142.x [Google Scholar]
  13. Van Bemmel, P., Pepper, R.
    [2000]. Seismic signal processing method and apparatus for generating a cube of variance values. Patent US06151555.
    [Google Scholar]
  14. Wu, X., Shi, Y., Fomel, S. and Liang, L.
    [2018]. Convolutional neural networks for fault interpretation in seismic images.10.1190/segam2018‑2995341.1.
    https://doi.org/10.1190/segam2018-2995341.1 [Google Scholar]
  15. Xiong, W., Ji, X., Ma, Y., Wang, Y., AlBinHassan, N.A., Ali, M.N. and Luo, Y.
    [2018]. Seismic fault detection with convolutional neural network.Geophysics. 831–28. 10.1190/geo2017‑0666.1.
    https://doi.org/10.1190/geo2017-0666.1 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1365-2397.fb2020020
Loading
/content/journals/10.3997/1365-2397.fb2020020
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error