1887

Abstract

Summary

Different applications of seismic interferometry have arisen in the last decade, however the potential of this technique to improve reflection seismic processing in hardrock environments has not been regarded explicitly. Therefore, in this paper we investigate the potential of retrieving the first arrivals originally hindered by high noise level in the exploitation of controlled-source data acquired over the apatite-iron deposit at Grängesberg (Sweden) and its mining-induced structures. The supervirtual first arrivals generated using interferometry methodologies allowed first-breaks to be picked more extensively than in the original data. Revised static corrections significantly improved the linearity of the first arrivals and continuity of reflections in the source gathers. Especially, reflections considerably enhanced in the source gathers stacked constructively in the final seismic section. Comparison with geologic data, supported by reflection-traveltime forward modelling, indicates that these reflections represent the deep (> 700 m) and unmined part of the deposit. Other reflections at shallower depth are interpreted as anthropogenic faults possibly located at lithological contacts (pegmatites). Even though the potential of first-arrivals retrieval is likely case-dependent, this study illustrates that interferometry may substantially improve the accuracy of field static corrections and subsequent stack for hardrock imaging and deep mineral exploration.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.201600030
2016-03-18
2024-04-29
Loading full text...

Full text loading...

References

  1. Al-Hagan, O., S.M.Hanafy, and Schuster, G.T.
    (2014). Iterative supervirtual refraction interferometry. Geophysics, 79(3), Q21–Q30, doi:10.1190/geo2013‑0210.1.
    https://doi.org/10.1190/geo2013-0210.1 [Google Scholar]
  2. An, S.-P., Hu, T.-Y., Cui, Y.-F., Duan, W.-S. and Peng, G.-X.
    (2015). Auto-pick first breaks with complex raypaths for undulate surface conditions. Appl. Geophys., 12(1), 93–100, doi:10.1007/s11770‑015‑0468‑2.
    https://doi.org/10.1007/s11770-015-0468-2 [Google Scholar]
  3. Bharadwaj, P., Schuster, G., Mallinson, I. and Dai, W.
    (2012). Theory of supervirtual refraction interferometry. Geophys. J. Int., 188(1), 263–273, doi:10.1111/j.1365‑246X.2011.05253.x.
    https://doi.org/10.1111/j.1365-246X.2011.05253.x [Google Scholar]
  4. Brand, E., C.Hurich, and S.Deemer
    (2013). Geometrical considerations in the acquisition of borehole interferometric data for imaging near-vertical features: Design of field experiments. Geophysics, 78(3), K1–K10, doi:10.1190/GEO2012‑0171.1.
    https://doi.org/10.1190/GEO2012-0171.1 [Google Scholar]
  5. Cheraghi, S., J.A.Craven, and G.Bellefleur
    (2015). Feasibility of virtual source reflection seismology using interferometry for mineral exploration: A test study in the Lalor Lake volcanogenic massive sulphide mining area, Manitoba, Canada. Geophys. Prospect., 63(4), 833–848, doi:10.1111/1365‑2478.12244.
    https://doi.org/10.1111/1365-2478.12244 [Google Scholar]
  6. Claerbout, J.F.
    (1968). Synthesis of a layered medium from its acoustic transmission response. Geophysics, 33, 264, doi:10.1190/1.1439927.
    https://doi.org/10.1190/1.1439927 [Google Scholar]
  7. Hurich, C. and S.Deemer
    (2013). Combined surface and borehole seismic imaging in a hard rock terrain: A field test of seismic interferometry. Geophysics, 78(3), B103–B110.
    [Google Scholar]
  8. Juhlin, C.
    (1995). Imaging of fracture zones in the Finnsjön area, central Sweden, using the seismic reflection method. Geophysics, 60(1), 66–75, doi:10.1190/1.1443764.
    https://doi.org/10.1190/1.1443764 [Google Scholar]
  9. Malehmir, A., M.Urosevic, G.Bellefleur, C.Juhlin, and B.Milkereit
    (2012). Seismic methods in mineral exploration and mine planning — Introduction. Geophysics, 77(5), WC1–WC2, doi:10.1190/2012‑0724‑SPSEIN.1.
    https://doi.org/10.1190/2012-0724-SPSEIN.1 [Google Scholar]
  10. Nilsson, K.P., K.Högdahl, E.Jonsson, V.R.Troll, F.Weis, L.Persson, J.Majka, and A.Skelton
    (2013). The Grängesberg Apatite-Iron Oxide Deposit. Report of the projects “Grängesbergsmalmerna - malmgenes, struktur och gruvrelaterad subsidens, # 35189” and “The origin of apatite-iron oxide ore and its setting: the Grängesberg Mining District, dnr 60-1629/20,
    [Google Scholar]
  11. Place, J. and A.Malehmir
    (n.d.). Using supervirtual first arrivals in controlled-source hardrock seismic imaging — well worth the effort. Submitted.
    [Google Scholar]
  12. Place, J., A.Malehmir, K.Högdahl, C.Juhlin, and K.Nilsson
    (2015). Seismic characterization of the Grängesberg iron deposit and its mining-induced structures, central Sweden. Interpretation, 3(3), SY41–SY56, doi:10.1190/INT‑2014‑0212.1.
    https://doi.org/10.1190/INT-2014-0212.1 [Google Scholar]
  13. Wapenaar, K.
    (2004). Retrieving the Elastodynamic Green’s Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Phys. Rev. Lett., 93(25), 254301, doi:10.1103/PhysRevLett.93.254301.
    https://doi.org/10.1103/PhysRevLett.93.254301 [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.201600030
Loading
/content/papers/10.3997/2214-4609.201600030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error