1887

Abstract

Summary

Electric Resistivity Tomography has been developing in Russia in just fifteen years almost exclusively under the influence of the personal initiative of a large group of geophysicists and designers. But we have already made significant progress. An instrument base has been created, which consists of a large set of specialized tools, focused on the various needs of geophysicists-production workers, scientists and teachers. The software is very high world-level developed for the processing and interpretation of ERT data. New technological directions in ERT have been developed that are focused on solving geological problems for a wide variety of geographical and climatic conditions that are typical for our country. Fundamentally new geophysical data have been obtained that make it possible to solve very complex geological problems in the search for ore objects, research of archaeology objects, study of karst, landslides, zones of tectonic disturbances, permafrost, the structures of modern and ancient river valleys, complex hydrogeological and environmental problems. Electric Resistivity Tomography, as it develops, becomes the most important tool in the hands of geologists.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202051157
2020-09-14
2024-04-28
Loading full text...

Full text loading...

References

  1. АндреевМ.А., БольшаковД.К., КомаровО.И., МодинИ.Н.
    [2009] Электрометрические исследования на переходах трасс проектируемых трубопроводов через водные преграды методом ННБ. Трубопроводный транспорт, №2(14), июль, 2009, с.23–25.
    [Google Scholar]
  2. БобачевА.А., ГорбуновА.А., МодинИ.Н., ШевнинВ.А.
    [2006] Электротомография методом сопротивлений и вызванной поляризации. Приборы и системы разведочной геофизики. 2006, № 2, с.14–17.
    [Google Scholar]
  3. БобачевА.А., МарченкоМ.Н., МодинИ.Н., ПервагоЕ.В., УрусоваА.В., ШевнинВ.А.
    [1995] Новые подходы к электрическим зондированиям горизонтально-неоднородных сред. Физика Земли. 1995, № 12, с.79–90.
    [Google Scholar]
  4. БобачевА.А., МодинИ.Н., ПервагоЕ.В., ШевнинВ.А.
    [1996] Многоэлектродные электрические зондирования в условиях горизонтально-неоднородных сред. М., 1996, 50 с. // Разведочная геофизика. Обзор. АОЗТ "Геоинформмарк". Выпуск 2.
    [Google Scholar]
  5. БобачевА.А., ЕрохинС.А.
    [2011] Практика применения электротомографии на малоглубинных акваториях. Инженерные изыскания. 2011. № 11, с. 24–29.
    [Google Scholar]
  6. БобачевА.А., СтойноваА.М.
    [2019] Практический опыт применения скважин-но- поверхностной электротомографии. Геофизика. 2019, №1, с.33–40.
    [Google Scholar]
  7. БогдановМ.И. КалининВ.В МодинИ.Н.
    [2013] Применение высокоточных низкочастотных электроразведочных комплексов для ведения длительного мониторинга опасных инженерно-геологических процессов. Инженерные изыскания, 2013, № 10–11, с. 110–115.
    [Google Scholar]
  8. БоголюбовA.H., БоголюбоваН.П., МозгановаЕ.Я.
    [1984] Руководство по интерпретации кривых ВЭ3 МДCМ.: Cтройиздат, 1984, 199 с.
    [Google Scholar]
  9. БольшаковД.К., МодинИ.Н., ЕфремовК.Д.
    [2017] Использование выносных линий для увеличения глубины электротомографических исследований. Инженерные изыскания. 2017. № 1, с.46–53.
    [Google Scholar]
  10. ГруздевА.И., МодинИ.Н., СкобелевА.Д.
    [2014] Сравнение различных методик контактных и бесконтактных измерений в условиях средней полосы России.// Инженерные изыскания. 2014, № 9–10, с.32–37.
    [Google Scholar]
  11. ЕрмаковА.П., СкобелевА.Д., СтромА.Л., БогдановМ.И., МодинИ.Н., ВладовМ.Л.
    [2017] Инженерно-геофизические исследования активных тектонических разломов в Южной Якутии. Инженерные изыскания, 04/2017, с.66–79.
    [Google Scholar]
  12. ЕрохинС.А., МодинИ.Н., НовиковВ.П., ПавловаА.М.
    [2011] Возможности электрической томографии при изучении карстово-суффозионных воронок. Инженерные изыскания, сентябрь, 2011, с. 66–72.
    [Google Scholar]
  13. КаминскийА.Е., ЕрохинС.А., ПолицинаА.В.
    [2016] Тотальная инверсия данных малоглубинных геофизических исследований. Инженерные изыскания. 2016, № 9, с.44–51.
    [Google Scholar]
  14. КаминскийА.Е., ЕрохинС.А., ШлыковА.А.
    . [2015] Совместная двумерная инверсия данных электротомографии и РМТ/АМТ. Геофизика. 2015 г., №4 с.32–39.
    [Google Scholar]
  15. КуликовВ.А., КаминскийА.Е., ЯковлевА.Г.
    [2017] Совместная инверсия данных электротомографии и магнитотеллурических зондирований при решении рудных задач. Геофизические исследования, 2017, том 18, № 3, с.27–44.
    [Google Scholar]
  16. КуликовВ.А., БобачевА.А., ЯковлевА.Г.
    [2014] Применение электротомографии при решении рудных задач до глубин 300–400 м. Геофизика. 2014, №2, с.39–46.
    [Google Scholar]
  17. КуликовВ.А., ЯковлевА.Г.
    [2015] Применение новых электроразведочных технологий при поисках и разведке рудных месторождений. Сборник докладов «Инженерная, угольная и рудная геофизика-2015. Современное состояние и перспективы развития. Серия: Комплексирование геофизических методов, ЕАГО, г. Сочи», 2015, с.15–17.
    [Google Scholar]
  18. МодинИ.Н., КуликовВ.А., ЯковлевА.Г.
    [2009] Глубинная электротомография вызванной поляризации для решения рудных задач. В сборнике 5-я научно-практической конференции «Инженерная и рудная геофизика 2009», Геленджик, 20–24 апреля 2009, место издания EAGE, с.1–3.
    [Google Scholar]
  19. МодинИ.Н., БольшаковД.К., КомаровО.И., АндреевМ.А.
    [2009]. Электрометрические исследования на переходах трасс проектируемых трубопроводов через водные преграды методом ННБ. Трубопроводный транспорт, 2009, июль, № 2 (14),с.29–31.
    [Google Scholar]
  20. МодинИ.Н., МакаровД.В., АлександровП.Н.
    [2014] Возможности электротомографических станций при выполнении мониторинговых наблюдений. Инженерные изыскания. 2014. № 7, с.10–19.
    [Google Scholar]
  21. СкобелевА.Д., МатлаховаЕ.Ю., СеребряковВ.С., ЕрмаковА.П., МодинИ.Н., БогдановМ.И.
    [2018]. Инженерно-геофизические и геоморфологические исследования приповерхностных газопроявлений в Ленинградской области. Инженерные изыскания, том XII, № 3–4/2018 c. 70–80
    [Google Scholar]
  22. BarkerR.D.
    [1992] A simple algorithm for electrical imaging of the subsurface. First Break, 1992, 10, № 2, р.53–62.
    [Google Scholar]
  23. Griffiths, D.H., Barker, R.D.
    [1993] Two-dimensional resistivity imaging and modelling in areas of complex geology. J. Appl. Geophysics, 1993, №29, р.211–226.
    [Google Scholar]
  24. GriffitsD.H. and TurnbillJ.
    [1985] A multi-electrode array for resistivity surveying. First Break, 1985, №3 (7), р.16–20.
    [Google Scholar]
  25. DahlinT.
    [1993] On the automation of 2D resistivity surveying for engineering and environmental applications. PhD thesis, 1993. Lund University.
    [Google Scholar]
  26. [1996] 2D resistivity surveying for environmental and engineering applications. First Break, 1996, №14, р.275–283.
    [Google Scholar]
  27. Edwards, L.S.
    [1977] A modified pseudosection for resistivity and IP. Geophysics, 1977. №42, р.1020–1036.
    [Google Scholar]
  28. Loke, M.H. and Barker, R.D.
    [1995] Least-squares deconvolution of apparent resistivity pseudosectious. Geophysics, 1995, №60, р.1682–1690.
    [Google Scholar]
  29. Loke, M.H. and Barker, R. D.
    [1996] Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 1996, №44, р.131–152.
    [Google Scholar]
  30. Andreev, M. A., Bolshakov, D. K., Komarov, O. I., Modin, I. N.
    [2009] Electrometric studies at the crossings of the routes of the projected pipelines through water barriers using the Directional drilling method. Pipeline transport, No. 2 (14), July, 2009, pp. 23–25 (rus.)
    [Google Scholar]
  31. Bobachev, A. A., Gorbunov, A. A., Modin, I. N., Shevnin, V. A.
    [2006] ERT as the method of resistivity and induced polarization. Instruments and systems of exploration Geophyzika. 2006, no. 2, pp. 14–17 (rus.).
    [Google Scholar]
  32. Bobachev, A. A., Marchenko, M. N., Modin, I. N., Pervago, E. V., Urusova, A.V., Shevnin, V. A.
    [1995] New approaches to electric sounding of horizontally inhomogeneous media. Physics Of The Earth. 1995, no. 12, pp. 79–90(rus.).
    [Google Scholar]
  33. Bobachev, A. A., Modin, I. N., Pervago, E. V., Shevnin, V. A.
    [1996] Multielectrode electric sounding in conditions of horizontally inhomogeneous media. Exploration Geophysics. Review. CJSC "Geoinformmark". Issue 2. Moscow, 1996, 50p (rus.).
    [Google Scholar]
  34. Bobachev, A. A. and Erokhin, S. A.
    [2011] The practice of application of ERT in shallow water areas. Engineering survey. 2011. No. 11, pp. 24–29(rus.).
    [Google Scholar]
  35. Bobachev, A. A. and Stoynova, A. M.
    [2019] Practical experience of applying the borehole — surface electrical tomography. Geophyzika. 2019, no. 1, pp. 33–40(rus.).
    [Google Scholar]
  36. Bogdanov, M. I. Kalinin, V. V. Modin, I. N.
    [2013] Application of high-precision low-frequency electrical survey systems for long-term monitoring of dangerous engineering and geological processes. Engineering surveys, 2013, no. 10–11, pp. 110–115(rus.).
    [Google Scholar]
  37. Bogolyubov, A. N., Bogolyubova, N. P., Mozganova, E. Ya.
    [1984] Guide to the VES interpretation of Two-Component Method. Moscow: Stroizdat, 1984, 199p (rus.).
    [Google Scholar]
  38. BolshakovD. K., ModinI. N., EfremovK. D.
    [2017] The use of extension lines for deeper ERT research. Engineering survey. 2017. No. 1, pp. 46–53(rus.).
    [Google Scholar]
  39. Gruzdev, A. I., Modin, I. N., Skobelev, A.D.
    [2014] Comparison of different methods of contact and non-contact measurements in the conditions of the middle zone of Russia. Engineering survey. 2014, no. 9–10, pp. 32–37(rus.).
    [Google Scholar]
  40. Ermakov, A. P., Skobelev, A.D., Strom, A. L., Bogdanov, M. I., Modin, I. N., Vladov, M. L.
    [2017] Engineering and geophysical studies of active tectonic faults in southern Yakutia. Engineering surveys, 04/2017, pp. 66–79 (rus.).
    [Google Scholar]
  41. Erokhin, S. A., Modin, I. N., Novikov, V. P., PavlovaA.M.
    [2011] ERT possibilities in the study of karst-suffusion funnels. Engineering surveys, September, 2011, pp. 66–72(rus.).
    [Google Scholar]
  42. Kaminsky, A. E., Erokhin, S. A., Policina, A. V.
    [2016] Total inversion of data is not enough-a deep geophysical studies. Engineering survey. 2016, no. 9, pp. 44–51(rus.).
    [Google Scholar]
  43. KaminskyA. E., YerokhinS. A., ShlykovA. A.
    [2015]. Joint two-dimensional inversion of electrotomography and RMT/AMT data. Geophyzika. 2015, no. 4, pp. 32–39(rus.).
    [Google Scholar]
  44. Kulikov, V. A., Kaminsky, A. E., Yakovlev, A. G.
    [2017]. Joint inversion of electrical tomography data and magnetotelluric soundings in the solution of ore problems. Geophysical research, 2017, vol. 18, no. 3, pp. 27–44 (rus.).
    [Google Scholar]
  45. Kulikov, V. A., Bobachev, A. A., Yakovlev, A. G.
    [2014] Application of electrotomography in solving ore problems to depths of 300–400 m. Geophyzika. 2014, no. 2, pp. 39–46(rus.).
    [Google Scholar]
  46. Kulikov, V. A. and Yakovlev, A. G.
    [2015] Application of new electric exploration technologies in the search and exploration of ore deposits. Collection of reports " Engineering, coal and ore Geophysics-2015. Current state and prospects of development. Series: Integration of geophysical methods, EAGO, Sochi", 2015, p. 15–17(rus.).
    [Google Scholar]
  47. Modin, I. N., Kulikov, V. A., Yakovlev, A. G.
    [2009] Deep ERT-IP for solving ore problems. In the collection of the 5th scientific and practical conference "Engineering and ore Geophysics 2009", Gelendzhik, April 20–24, 2009, place of publication EAGE, p. 1–3(rus.).
    [Google Scholar]
  48. Modin, I. N., Bolshakov, D. K., Komarov, O. I., Andreev, M. A.
    [2009]. Electrometric studies at the crossings of the routes of the projected pipelines through water barriers using the NSB method. Pipeline transport, 2009, July, no. 2 (14), pp. 29–31 (rus.).
    [Google Scholar]
  49. Modin, I. N., Makarov, D. V., Alexandrov, P. N.
    [2014]. Opportunities ERT stations when performing monitoring observations. Engineering survey. 2014. No. 7, pp. 10–19(rus.).
    [Google Scholar]
  50. Skobelev, A.D., Malakhova, E. Yu., Serebryakov, V. S., Ermakov, A. P., Modin, I. N., BogdanovM. I.
    [2018]. Engineering-geophysical and geomorphological surface studies of gas phenomena in the Leningrad region. Engineering surveys, XII XII, no. 3–4 / 2018, p. 70–80(rus.).
    [Google Scholar]
  51. Barker, R.D.
    [1992] A simple algorithm for electrical imaging of the subsurface. First Break, 1992, 10, № 2, р.53–62.
    [Google Scholar]
  52. Griffiths, D.H., Barker, R.D.
    [1993] Two-dimensional resistivity imaging and modelling in areas of complex geology. J. Appl. Geophysics, 1993, №29, р.211–226.
    [Google Scholar]
  53. Griffits, D.H. and Turnbill, J.
    [1985] A multi-electrode array for resistivity surveying. First Break, 1985, №3 (7), р.16–20.
    [Google Scholar]
  54. Dahlin, T.
    [1993] On the automation of 2D resistivity surveying for engineering and environmental applications. PhD thesis, 1993. Lund University.
    [Google Scholar]
  55. [1996] 2D resistivity surveying for environmental and engineering applications. First Break, 1996, №14, р.275–283.
    [Google Scholar]
  56. Edwards, L.S.
    [1977] A modified pseudosection for resistivity and IP. Geophysics, 1977. №42, р.1020–1036.
    [Google Scholar]
  57. Loke, M.H. and Barker, R.D.
    [1995] Least-squares deconvolution of apparent resistivity pseudosectious. Geophysics, 1995, №60, р.1682–1690.
    [Google Scholar]
  58. Loke, M.H. and Barker, R. D.
    [1996] Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 1996, №44, р.131–152.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202051157
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error