1887

Abstract

Summary

The article proposes mathematical models for calculating induced polarization (IP) when solving 3-D airborne time-domain electromagnetic problems. The proposed approaches are optimized directly for solving “multisource” problems for further application in data processing systems. For constructing finite element approximation, we use optimized non-conforming hexahedral meshes allowing to drastically reduce the number of degrees of freedom while keeping the required solution accuracy. In addition, to provide calculations with a large number of positions of the transmitter-receiver set, the space-time grouping of subtasks corresponding to different positions of the airborne system and parallelization were used. We present a comparison of the developed computational schemes that perform calculations both directly in the time domain and in the frequency domain, as well as a comparison with the results of other authors. It is shown that the solutions obtained using different approaches are in good agreement with each other. The computational costs required for calculating the electromagnetic field taking into account the IP effects in a complex 3-D medium with topography are about 10 s per position. This will make it possible to use this approach in the future in systems for processing airborne data.

Loading

Article metrics loading...

/content/papers/10.3997/2214-4609.202152081
2021-04-26
2024-04-29
Loading full text...

Full text loading...

References

  1. 1.Couto Junior, M. A., Fiandaca, G., Maurya, P. K., Christiansen, A. V., Porsani, J. L. and Auken, E. [2020]. AEMIP robust inversion using maximum phase angle Cole–Cole model re-parameterisation applied for HTEM survey over Lamego gold mine, Quadrilátero Ferrífero, MG, Brazil.Exploration Geophysics, 51(1), 170–183, DOI: 10.1080/08123985.2019.1682458.
    https://doi.org/10.1080/08123985.2019.1682458 [Google Scholar]
  2. 2.Ji, Y., Meng, X., Huang, W., Wu, Y. and Li, G. [2020] 3D numerical modeling of induced-polarization grounded electrical-source airborne transient electromagnetic response based on the fictitious wave field methods.Applied Sciences, 10(3), Art. 1027, DOI: 10.3390/app10031027.
    https://doi.org/10.3390/app10031027 [Google Scholar]
  3. 3.KangS., OldenburgD. W. and HeagyL. J. [2020] Detecting induced polarisation effects in time-domain data: a modelling study using stretched exponentials.Exploration Geophysics, 51(1), 122–133, DOI: 10.1080/08123985.2019.1690393.
    https://doi.org/10.1080/08123985.2019.1690393 [Google Scholar]
  4. 4.KwanK. and MüllerD. [2020] Mount Milligan alkalic porphyry Au–Cu deposit, British Columbia, Canada, and its AEM and AIP signatures: Implications for mineral exploration in covered terrains.Journal of Applied Geophysics, 180, Art. 104131, DOI: 10.1016/j.jappgeo.2020.104131.
    https://doi.org/10.1016/j.jappgeo.2020.104131 [Google Scholar]
  5. 5.LiuR. and MengQ. [2020] Time-domain solution of Cole-Cole model with induced polarization method.IOP Conference Series: Earth and Environmental Science, 585(1), Art. 012198, DOI:10.1088/1755‑1315/585/1/012198.
    https://doi.org/10.1088/1755-1315/585/1/012198 [Google Scholar]
  6. 6.Marchant, D. [2015] Induced polarization effects in inductive source electromagnetic data. Ph.D. Thesis, University of British Columbia.
    [Google Scholar]
  7. 7.MüllerD., KwanK. and GrovesD. I. [2021] Geophysical implications for the exploration of concealed orogenic gold deposits: a case study in the Sandy Lake and Favourable Lake Archean greenstone belts, Superior Province, Ontario, Canada.Ore Geology Reviews, 128, Art. 103892, DOI: 10.1016/j.oregeorev.2020.103892.
    https://doi.org/10.1016/j.oregeorev.2020.103892 [Google Scholar]
  8. 8.Persova, M.G., Soloveichik, Y.G., Vagin, D.V., Kiselev, D.S., Grif, A.M., Koshkina, Y.I. and Sivenkova, A.P. [2020a] Three-dimensional inversion of airborne data with applications for detecting elongated subvertical bodies overlapped by an inhomogeneous conductive layer with topography.Geophysical Prospecting, 68(7), 2217–2253.
    [Google Scholar]
  9. 9.Persova, M. G., Soloveichik, Y. G., Vagin, D. V., Kiselev, D. S. and Koshkina, Y. I. [2020b] Finite element solution to 3-D airborne time-domain electromagnetic problems in complex geological media using non-conforming hexahedral meshes.Journal of Applied Geophysics, 172, Art. 103911, DOI: 10.1016/j.jappgeo.2019.103911.
    https://doi.org/10.1016/j.jappgeo.2019.103911 [Google Scholar]
  10. 10.Persova, M.G., Soloveichik, Y.G., Vagin, D.V., Kiselev, D.S., Sivenkova, A.P. and Koshkina, Y.I. [2020c] An approach to the geometric 3D inversion of airborne EM data for detection and geometrization of local targets overlapped by laterally inhomogeneous layers.Engineering and Mining Geophysics 2020, Extended Abstracts, 1–8, DOI: 10.3997/2214‑4609.202051090.
    https://doi.org/10.3997/2214-4609.202051090 [Google Scholar]
  11. 11.Persova, M.G., Soloveichik, Yu.G., Vagin, D.V., Koshkina, Yu.I., Simon, E.I. [2018] Numerical scheme for modelling the electromagnetic field in airborne electromagnetic survey taking into account follow currents in transmitter loop.2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Russia, 216–227, DOI: 10.1109/APEIE.2018.8546324
    https://doi.org/10.1109/APEIE.2018.8546324 [Google Scholar]
  12. 12.Persova, M.G., Soloveichik, Y.G., Vagin, D.V., Sivenkova, A.P., Simon, E.I., and Tokareva, M.G. [2020d] The induced polarization effect in airborne EM prospecting of ore deposits in the Ural region.Engineering and Mining Geophysics 2020, Extended Abstracts, 1–6, DOI: 10.3997/2214‑4609.202051105.
    https://doi.org/10.3997/2214-4609.202051105 [Google Scholar]
  13. 13.Qi, Y., El-Kaliouby, H., Revil, A., Ahmed, A. S., Ghorbani, A. and Li, J. [2019] Three-dimensional modeling of frequency-and time-domain electromagnetic methods with induced polarization effects.Computers & Geosciences, 124, 85–92, DOI: 10.1016/j.cageo.2018.12.011.
    https://doi.org/10.1016/j.cageo.2018.12.011 [Google Scholar]
  14. 14.Sharifi, F., Arab-Amiri, A. R., Kamkar-Rouhani, A. and Börner, R. U. [2020]. Development of a novel approach for recovering SIP effects from 1-D inversion of HEM data: Case study from the Alut area, northwest of Iran.Journal of Applied Geophysics, 174, Art. 103962, DOI: 10.1016/j.jappgeo.2020.103962.
    https://doi.org/10.1016/j.jappgeo.2020.103962 [Google Scholar]
  15. 15.ViezzoliA. and MancaG. [2020] On airborne IP effects in standard AEM systems: tightening model space with data space.Exploration Geophysics, 51(1), 155–169, DOI: 10.1080/08123985.2019.1681895.
    https://doi.org/10.1080/08123985.2019.1681895 [Google Scholar]
  16. 16.Персова, М. Г., Соловейчик, Ю. Г., Вагин, Д. В., Домников, П. А. [2011] Сравнение различных подходов к численному моделированию трехмерных полей вызванной поляризации.Доклады Академии наук высшей школы Российской Федерации, 2, 123–139.
    [Google Scholar]
  17. 1.Couto Junior, M. A., Fiandaca, G., Maurya, P. K., Christiansen, A. V., Porsani, J. L. and Auken, E. [2020]. AEMIP robust inversion using maximum phase angle Cole–Cole model re-parameterisation applied for HTEM survey over Lamego gold mine, Quadrilátero Ferrífero, MG, Brazil.Exploration Geophysics, 51(1), 170–183, DOI: 10.1080/08123985.2019.1682458.
    https://doi.org/10.1080/08123985.2019.1682458 [Google Scholar]
  18. 2.Ji, Y., Meng, X., Huang, W., Wu, Y. and Li, G. [2020] 3D numerical modeling of induced-polarization grounded electrical-source airborne transient electromagnetic response based on the fictitious wave field methods.Applied Sciences, 10(3), Art. 1027, DOI: 10.3390/app10031027.
    https://doi.org/10.3390/app10031027 [Google Scholar]
  19. 3.KangS., OldenburgD. W. and HeagyL. J. [2020] Detecting induced polarisation effects in time-domain data: a modelling study using stretched exponentials.Exploration Geophysics, 51(1), 122–133, DOI: 10.1080/08123985.2019.1690393.
    https://doi.org/10.1080/08123985.2019.1690393 [Google Scholar]
  20. 4.KwanK. and MüllerD. [2020] Mount Milligan alkalic porphyry Au–Cu deposit, British Columbia, Canada, and its AEM and AIP signatures: Implications for mineral exploration in covered terrains.Journal of Applied Geophysics, 180, Art. 104131, DOI: 10.1016/j.jappgeo.2020.104131.
    https://doi.org/10.1016/j.jappgeo.2020.104131 [Google Scholar]
  21. 5.LiuR. and MengQ. [2020] Time-domain solution of Cole-Cole model with induced polarization method.IOP Conference Series: Earth and Environmental Science, 585(1), Art. 012198, DOI:10.1088/1755‑1315/585/1/012198.
    https://doi.org/10.1088/1755-1315/585/1/012198 [Google Scholar]
  22. 6.Marchant, D. [2015] Induced polarization effects in inductive source electromagnetic data. Ph.D. Thesis, University of British Columbia.
    [Google Scholar]
  23. 7.MüllerD., KwanK. and GrovesD. I. [2021] Geophysical implications for the exploration of concealed orogenic gold deposits: a case study in the Sandy Lake and Favourable Lake Archean greenstone belts, Superior Province, Ontario, Canada.Ore Geology Reviews, 128, Art. 103892, DOI: 10.1016/j.oregeorev.2020.103892.
    https://doi.org/10.1016/j.oregeorev.2020.103892 [Google Scholar]
  24. 8.PersovaM.G., SoloveychikYu.G., VaginD.V. and DomnikovP.A. [2011] Sravnenie razlichnykh podkhodov k chislennomu modelirovaniiu trekhmernykh polei vyzvannoi poliarizatsii [Comparison of different numerical modeling approaches for three dimensional induced polarization].Doklady Akademii Nauk Vysshei Shkoly Rossiiskoi Federatsii [Proceedings of the Russian Higher School Academy of Sciences], 2, 123–139.
    [Google Scholar]
  25. 9.Persova, M.G., Soloveichik, Y.G., Vagin, D.V., Kiselev, D.S., Grif, A.M., Koshkina, Y.I. and Sivenkova, A.P. [2020a] Three-dimensional inversion of airborne data with applications for detecting elongated subvertical bodies overlapped by an inhomogeneous conductive layer with topography.Geophysical Prospecting, 68(7), 2217–2253.
    [Google Scholar]
  26. 10.Persova, M. G., Soloveichik, Y. G., Vagin, D. V., Kiselev, D. S. and Koshkina, Y. I. [2020b] Finite element solution to 3-D airborne time-domain electromagnetic problems in complex geological media using non-conforming hexahedral meshes.Journal of Applied Geophysics, 172, Art. 103911, DOI: 10.1016/j.jappgeo.2019.103911.
    https://doi.org/10.1016/j.jappgeo.2019.103911 [Google Scholar]
  27. 11.Persova, M.G., Soloveichik, Y.G., Vagin, D.V., Kiselev, D.S., Sivenkova, A.P. and Koshkina, Y.I. [2020c] An approach to the geometric 3D inversion of airborne EM data for detection and geometrization of local targets overlapped by laterally inhomogeneous layers.Engineering and Mining Geophysics 2020, Extended Abstracts, 1–8, DOI: 10.3997/2214‑4609.202051090.
    https://doi.org/10.3997/2214-4609.202051090 [Google Scholar]
  28. 12.Persova, M.G., Soloveichik, Yu.G., Vagin, D.V., Koshkina, Yu.I., Simon, E.I. [2018] Numerical scheme for modelling the electromagnetic field in airborne electromagnetic survey taking into account follow currents in transmitter loop.2018 XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE), Novosibirsk, Russia, 216–227, DOI: 10.1109/APEIE.2018.8546324
    https://doi.org/10.1109/APEIE.2018.8546324 [Google Scholar]
  29. 13.Persova, M.G., Soloveichik, Y.G., Vagin, D.V., Sivenkova, A.P., Simon, E.I., and Tokareva, M.G. [2020d] The induced polarization effect in airborne EM prospecting of ore deposits in the Ural region.Engineering and Mining Geophysics 2020, Extended Abstracts, 1–6, DOI: 10.3997/2214‑4609.202051105.
    https://doi.org/10.3997/2214-4609.202051105 [Google Scholar]
  30. 14.Qi, Y., El-Kaliouby, H., Revil, A., Ahmed, A. S., Ghorbani, A. and Li, J. [2019] Three-dimensional modeling of frequency-and time-domain electromagnetic methods with induced polarization effects.Computers & Geosciences, 124, 85–92, DOI: 10.1016/j.cageo.2018.12.011.
    https://doi.org/10.1016/j.cageo.2018.12.011 [Google Scholar]
  31. 15.Sharifi, F., Arab-Amiri, A. R., Kamkar-Rouhani, A. and Börner, R. U. [2020]. Development of a novel approach for recovering SIP effects from 1-D inversion of HEM data: Case study from the Alut area, northwest of Iran.Journal of Applied Geophysics, 174, Art. 103962, DOI: 10.1016/j.jappgeo.2020.103962.
    https://doi.org/10.1016/j.jappgeo.2020.103962 [Google Scholar]
  32. 16.ViezzoliA. and MancaG. [2020] On airborne IP effects in standard AEM systems: tightening model space with data space.Exploration Geophysics, 51(1), 155–169, DOI: 10.1080/08123985.2019.1681895.
    https://doi.org/10.1080/08123985.2019.1681895 [Google Scholar]
http://instance.metastore.ingenta.com/content/papers/10.3997/2214-4609.202152081
Loading
/content/papers/10.3997/2214-4609.202152081
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error