1887
Volume 19, Issue 3
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

A gravity survey was conducted at a salt mine in Nemocón, Cundinamarca, Colombia, located in the axial part of the Eastern Cordillera of the northern Andes. This part of the Eastern Cordillera is characterized by successions of synclines and anticlines sometimes containing salt bodies at their core, and the mine is located at the top of one of these anticlines called the Nemocón anticline. As is typical for salt and other mines in Colombia, very little data on the internal structure and geology are publicly available. The purpose of our study is to show how gravity data and modelling can be used to infer near‐surface properties above the mine in the absence of other sources of information. Relative gravity measurements were made over an irregular grid of 107 stations and tied to the Instituto Geográfico Augustin Codazi national absolute gravity network. The total and residual Bouguer anomalies as well as the analytic signal were calculated over the area of the salt body. Using grid data, we first determine the main inversion parameters (e.g., depth weighting) and model resolution using a checkerboard model with the addition of random noise. Then, applying 3D inversion modelling to the residual Bouguer anomaly, we find that the positive and negative anomalies correspond to few zones of positive density contrasts and two main zones of negative density contrasts. Some of the positive anomalies are located above the fault trace putting in contact the Arenisca Dura formation with the Conejo formation containing the salt body. The negative anomalies are not well correlated with the underground position of the salt mine, but some influence of the low‐density ‘’ material, consisting of black clays with shaly claystone parts covering the salt body might be important. This study showcases how 3D inverse modelling can provide important information on the near‐surface structure of a salt mine.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12146
2021-05-11
2024-04-26
Loading full text...

Full text loading...

References

  1. Aster, R.C., Borchers, B. and Thurber, C.H. (2013) Parameter Estimation and Inverse Problems, 2nd edition. Waltham, MA: Academic Press.
    [Google Scholar]
  2. Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., et al. (2013) Onset of fault reactivation in the Eastern Cordillera of Colombia and proximal Llanos Basin; response to Caribbean–South American convergence in early Palaeogene time. Geological Society, London, Special Publications, 377(1), 285–314.
    [Google Scholar]
  3. Briceño, A., Buitrago, J. and Lopez, C. (1990) Edad y origen de los depósitos de sal de la Sabana de Bogotá. B.Sc. thesis, Universidad Nacional de Colombia, Bogotá.
  4. Briggs, I.C. (1974) Machine contouring using minimum curvature. Geophysics, 39(1), 39–48.
    [Google Scholar]
  5. Cardale Schrimpff, M. (2015) Pre‐Columbian salt production in Colombia – searching for the evidence. In: Brigand, R. and Weller, O. (Eds.) Archaeology of Salt: Approaching an Invisible Past. Leiden: Sidestone Press, pp. 29–46.
    [Google Scholar]
  6. Cárdenas, A. and Castillo, L. (2013) Interpretación de datos gravimétricos con la señal analítica 3D. Estudio de caso: Los Naranjos – Facatativá (Colombia). Boletin De Geologia, 35(1), 97–107.
    [Google Scholar]
  7. Cárdenas, A., Fuentes, H., Castillo, L. and Acosta, J. (2014) Fundamentos teóricos y su aplicación en los métodos de potencial geomagnético y gravimétrico. Editorial Universidad Distrital Francisco José de Caldas.
  8. Cattin, R., Mazzotti, S. and Baratin, L.M. (2015) GravProcess: an easy‐to‐use MATLAB software to process campaign gravity data and evaluate the associated uncertainties. Computers & Geosciences, 81, 20–27.
    [Google Scholar]
  9. Cediel, F., Shaw, R.P. and Cáceres, C. (2003) Tectonic assembly of the Northern Andean Block, in C. Bartolini, R. T. Buffler, and J. Blickwede, eds., The Circum‐Gulf of Mexico and the Caribbean: hydrocarbon habitats, basin formation, and plate tectonics. AAPG Memoir, 79, 815–848.
    [Google Scholar]
  10. Colletta, B., Hebrard, F., Letouzey, J., Werner, P. and Rudkiewicz, J.L. (1990) Tectonic style and crustal structure of the Eastern Cordillera (Colombia) from a balanced cross‐section. Petroleum and Tectonics in Mobile Belts. Paris, Editions Technip, pp. 81–100.
    [Google Scholar]
  11. Cooper, M.A., Addison, F.T., Alvarez, R., Coral, M., Graham, R., et al. (1995) Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and middle Magdalena Valley, Colombia. AAPG Bulletin, 79(10), 1421–1442.
    [Google Scholar]
  12. Cortés, M., Colletta, B. and Angelier, J. (2006) Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. Journal of South American Earth Sciences, 21(4), 437–465.
    [Google Scholar]
  13. Craig, M. (1996) Analytical signals for multivariate data. Mathematical Geology, 38, 314–330.
    [Google Scholar]
  14. García, H. and Jiménez, G. (2016a) Structural analysis of the Zipaquira Anticline (Eastern Cordillera, Colombia). Boletín de Ciencias de la Tierra, 39, 21–32.
    [Google Scholar]
  15. García, H. and Jiménez, G. (2016b) Transverse zones controlling the structural evolution of the Zipaquira Anticline (Eastern Cordillera, Colombia): Regional implications. Journal of South American Earth Sciences, 69, 243–258.
    [Google Scholar]
  16. Hackney, R.I. and Featherstone, W.E. (2003) Geodetic versus geophysical perspectives of the “gravity anomaly.” Geophysical Journal International, 154, 35–43.
    [Google Scholar]
  17. Hammer, S. (1983) Airborne gravity is here!. Geophysics, 48(2), 213–223.
    [Google Scholar]
  18. Hansen, R., Pawlowski, R. and Wang, X. (1987) Joint use of analytic signal and amplitude of horizontal gradient maxima for three‐dimensional; gravity data interpretation. SEG 57th Annual Meeting, Expanded Abstract, 100–102.
    [Google Scholar]
  19. Hinze, W.J., (2003) Bouguer reduction density, why 2.67?. Geophysics, 68(5), 1559–1560.
    [Google Scholar]
  20. Hinze, W.J., von Frese, R.R.B. and Saad, A.H. (2013) Gravity and Magnetic Exploration, Principles, Practices, and Applications. New York: Cambridge University Press.
    [Google Scholar]
  21. Kammer, A., Piraquive, A., Gómez, C., Mora, A. and Velásquez, A. (2020) Structural styles of the Eastern Cordillera of Colombia. In: Gómez, J. and Mateus–Zabala, D. (Eds.) The Geology of Colombia, Volume 3 Paleogene – Neogene.. Bogotá: Servicio Geológico Colombiano, Publicaciones Geológicas Especiales pp. 37, 41.
    [Google Scholar]
  22. López, C., Briceño, A. and Buitrago, J. (1991) Edad y origen de los diapiros de sal de la Sabana de Bogotá. ACGGP 4th Simposio BolivarianoExploracion Petrolera en las Cuencas Subandinas.
  23. McLaughlin, D.H. (1972) Evaporite deposits of Bogotá área, Cordillera Oriental, Colombia. AAPG Bulletin, 56(11), 2240–2259.
    [Google Scholar]
  24. Méndes Bernal, M.Y. (2016) Modelo hidrogeológico conceptual de la mina de sal de Nemocón, contrato de concesión HI00‐01. Universidad Pedagógica y Tecnológica de Colombia (Monograph).
  25. Mendonca, C.A. and Silva, J.B.C. (1994) The equivalent data concept applied to the interpolation of potential field data. Geophysics, 59(5), 722–732.
    [Google Scholar]
  26. Montoya, D. and Reyes, G. (2003) Geología de la Plancha 209 Zipaquira. Bogotá, Colombia: INGEOMINAS, p. 156.
  27. Mora, A., Parra, M., Strecker, M.R., Sobel, E.R., Hooghiemstra, H., Torres, V. and Jaramillo, J.V. (2008) Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Geological Society of America Bulletin, 120(7–8), 930–949.
    [Google Scholar]
  28. Mora‐Páez, H., Kellogg, J.N., Freymueller, J.T., Mencin, D., Fernandes, R.M.S., et al. (2019) Crustal deformation in the northern Andes – a new GPS velocity field. Journal of South American Earth Sciences, 89, 76–91.
    [Google Scholar]
  29. Mora‐Páez, H., Mencin, D.J., Molnar, P., Diederix, H., Cardona‐Piedrahita, L., Peláez‐Gaviria, J.‐R. and Corchuelo‐Cuervo, Y. (2016) GPS velocities and the construction of the Eastern Cordillera of the Colombian Andes. Geophysical Research Letters, 43, 8407–8416.
    [Google Scholar]
  30. Moritz, H. (1980) Geodetic reference system 1980. Bulletin Geodesique, 54, 395–405.
    [Google Scholar]
  31. Nabighian, M.N. (1972) The analytic signal of two‐dimensional magnetic bodies with polygonal cross section: its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.
    [Google Scholar]
  32. Nabighian, M.N. (1984) Toward the three‐dimensional automatic interpretation of potential field data via generalized Hilbert transforms: fundamental relations. Geophysics, 53, 957–966.
    [Google Scholar]
  33. Oldenburg, D.W. and Li, Y. (2005) Inversion for applied geophysics: A tutorial. In: Butler, D.K. (Ed.) Near‐Surface Geophysics. Tulsa, Okla, SEG, pp. 89–150.
    [Google Scholar]
  34. Oliveira, V.C. and Barbosa, V.C.F. (2013) 3‐D radial gravity gradient inversion. Geophysical Journal International, 195, 883–902.
    [Google Scholar]
  35. Parravano, V., Teixell, A. and Mora, A. (2015) Influence of salt in the tectonic development of the frontal thrust belt of the eastern Cordillera (Guatiquía area, Colombian Andes). Interpretation, 3(4), SAA17–SAA27.
    [Google Scholar]
  36. Rincón, X. and Hernández, X. (1986) Génesis y Geometría de la Estructura de Sal de Nemocón, Cundinamarca, Undergraduate Thesis. Universidad Nacional de Colombia.
  37. Rodriguez, E. (2005) Accuracy assessment and comparison with other elevation data, The Shuttle Radar Topography Mission—Data validation and applications, workshop. Reston, Virginia.
  38. Roest, W.R., Verhoef, J. and Pilkington, M. (1992) Magnetic interpretation using 3‐D analytic signal. Geophysics, 57, 116–125.
    [Google Scholar]
  39. Saibi, H., Nishijima, J., Ehara, S., and Aboud, E. (2006) Integrated gradient interpretation techniques for 2D and 3D gravity data interpretation. Earth, Planets and Space, 58(7), 815–821.
    [Google Scholar]
  40. Shcherbinina, G.P., Prostolupov, G.V. and Bychkov, S.G. (2011) The gravimetrical survey in handling the geological and mining problems at the Upper Kama Potassium Salt Deposit. Journal of Mining Science, 47, 566–572.
    [Google Scholar]
  41. Silva Dias, F.J.S., Barbosa, V.C.F. and Silva, J.B.C. (2011) Adaptive learning 3D gravity inversion for salt‐body imaging. Geophysics, 76(3), 149–157.
    [Google Scholar]
  42. Stadtler, C., Fichler, C., Hokstad, K., Myrlund, E.A., Wienecke, S. and Fotland, B. (2014) Improved salt imaging in a basin context by high resolution potential field data: Nordkapp Basin, Barents Sea. Geophysical Prospecting, 62, 615–630.
    [Google Scholar]
  43. Teixell, A., Ruiz, J.C., Teson, E. and Mora, A. (2015) The structure of an inverted back‐arc rift: insights from a transect across the Eastern Cordillera of Colombia near Bogota, in C. Bartolini and P. Mann, eds., Petroleum geology and potential of the Colombian Caribbean Margin. AAPG Memoir, 108, 499–516.
    [Google Scholar]
  44. Telford, W.M., Geldard, L.P. and Sheriff, R.E. (1990) Applied Geophysics, 2nd edition. Cambridge University Press.
    [Google Scholar]
  45. Tesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., et al. (2013) Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society, London, Special Publications, 377(1), 257–252.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12146
Loading
/content/journals/10.1002/nsg.12146
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Data processing; Gravity; Inversion; Modelling

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error