1887
Volume 19 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The existence of active faults hidden below Quaternary alluvium is a common geological scenario for intermontane basins, such as the areas struck by the recent earthquakes in Central Italy, and is of great importance for seismic hazard evaluation. Finding hidden faults is a challenging task from the geophysicist's point of view since the goal is twofold: to identify the seismic bedrock at a certain depth; and to detect lateral variations or dislocations that may indicate the presence of a fault. We propose a mixed approach encompassing at first single‐station seismic noise measurements, to detect sudden lateral variations in the bedrock surface in a fast and cost‐effective way, which might serve as a proxy for the potential identification of fault zones. Then, more accurate electrical resistivity tomography investigations are carried out only at selected sites as indicated by the preliminary noise analysis, as electrical methods cannot effectively be employed at a large scale for time and economic limitations. Surface‐wave dispersion analysis is jointly interpreted together with ambient noise data to improve the seismic characterization of the alluvium, giving further insight on the assessment of the depth to bedrock. The proposed approach can be an effective way to manage and investigate a large portion of the territory within a sensible budget, as commonly needed in seismic hazard assessment and microzonation studies. We present a real‐world application to the San Vittorino Plain (Central Italy) close to the epicentre of the 24 August 2016 Amatrice earthquake, where the geological faulted bedrock is covered by alluvial sediments of the Velino River up to a maximum estimated thickness of 150–200 m. Although engineered for the post‐earthquake reconstruction emergency, the approach employed in our study can be adopted in other areas of similar geology, to ease the application of seismic microzonation in time of seismic silence as a tool for long‐term land planning and management.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12147
2021-04-16
2024-04-26
Loading full text...

Full text loading...

References

  1. Bard, P.‐Y. (1985) Les effets de site d'origine structurale: Principaux résultats experimentaux et théoriques. In: Davidovici, V. (Ed.) Genie Parasismique. Presses de l'Ecole Nationale des Ponts et Chaussées, pp. 223–238.
    [Google Scholar]
  2. Bard, P.‐Y. and SESAME‐Team (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations measurements, processing and interpretations. SESAME European research project EVG1‐CT‐2000‐00026, deliverable D23.12, available at http://sesame‐fp5.obs.ujf‐grenoble.fr.
  3. Benjumea, B., Macau, A., Gabàs, A., Bellmunt, F., Figueras, S. and Cirés, J. (2011) Integrated geophysical profiles and H/V microtremor measurements for subsoil characterization. Near Surface Geophysics, 9(5), 413–425. https://doi.org/10.3997/1873‐0604.2011021.
    [Google Scholar]
  4. Bonnefoy‐Claudet, S., Cornou, C., Bard, P.‐Y., Cotton, F., Moczo, P., Kristek, J. and Fäh, D. (2006) H/V ratio: a tool for site effects evaluation. Results from 1‐D noise simulations. Geophysical Journal International, 167(2), 827–837. https://doi.org/10.1111/j.1365‐246X.2006.03154.x.
    [Google Scholar]
  5. Cardarelli, E., Cercato, M., De Donno, G. and Di Filippo, G. (2014) Detection and imaging of piping sinkholes by integrated geophysical methods. Near Surface Geophysics, 12(3), 439–450. https://doi.org/10.3997/1873‐0604.2013051.
    [Google Scholar]
  6. Cardarelli, E. and De Donno, G. (2017) Multidimensional electrical resistivity survey for bedrock detection at the Rieti Plain (Central Italy). Journal of Applied Geophysics, 141, 77–87. https://doi.org/10.1016/j.jappgeo.2017.04.012.
    [Google Scholar]
  7. Caterina, D., Beaujean, J., Robert, T. and Nguyen, F. (2013) A comparison study of different image appraisal tools for electrical resistivity tomography. Near Surface Geophysics, 11(6), 639–658. https://doi.org/10.3997/1873‐0604.2013022.
    [Google Scholar]
  8. Centamore, E. and Nisio, S. (2002) Quaternary morphodynamics between the Velino and Salto Valleys. International workshops on large‐scale vertical movements and related gravitational processes. Rome‐Camerino, 21–26 June 1999. Studi Geologici Camerti, Vol. Spec (1/2002), pp. 33–44.
  9. Centamore, E., Nisio, S. and Rossi, D. (2009) The San Vittorino Sinkhole Plain: relationships between bedrock structure, sinking processes, seismic events and hydrothermal springs. Italian Journal of Geosciences, 128(3), 629–639. https://doi.org/10.3301/IJG.2009.128.3.629.
    [Google Scholar]
  10. Cercato, M. (2011) Global surface wave inversion with model constraints. Geophysical Prospecting, 59, 210–226. https://doi.org/10.1111/j.1365‐2478.2010.00922.x.
    [Google Scholar]
  11. Cercato, M. (2018) Sensitivity of Rayleigh wave ellipticity and implications for surface wave inversion. Geophysical Journal International, 213, 489–510. https://doi.org/10.1093/GJI/GGX558.
    [Google Scholar]
  12. Chambers, J.E., Wilkinson, P.B., Penn, S., Meldrum, P.I., Kuras, O., Loke, M.H. and Gunn, D.A. (2013) River terrace sand and gravel deposit reserve estimation using three‐dimensional electrical resistivity tomography for bedrock surface detection. Journal of Applied Geophysics, 93, 25–32. https://doi.org/10.1016/j.jappgeo.2013.03.002.
    [Google Scholar]
  13. De Donno, G. and Cardarelli, E. (2017) VEMI: a flexible interface for 3D tomographic inversion of time‐ and frequency‐domain electrical data in EIDORS. Near Surface Geophysics, 15(1), 43–58. https://doi.org/10.3997/1873‐0604.2016037.
    [Google Scholar]
  14. Deceuster, J., Etienne, A., Robert, T., Nguyen, F. and Kaufmann, O. (2014) A modified DOI‐based method to statistically estimate the depth of investigation of DC resistivity surveys. Journal of Applied Geophysics, 103, 172–185. https://doi.org/10.1016/j.jappgeo.2014.01.018.
    [Google Scholar]
  15. Demanet, D., Renardy, F., Vanneste, K., Jongmans, D., Camelbeeck, T. and Meghraoui, M. (2001) The use of geophysical prospecting for imaging active faults in the Roer Graben, Belgium. Geophysics, 66(1), 78–89. https://doi.org/10.1190/1.1444925.
    [Google Scholar]
  16. Di Filippo, M., Nolasco, M., Rizzo, S. and Toro, B. (2004) Indagini geofisiche per l'individuazione di aree a rischio sinkhole nella piana di S.Vittorino (RI). Proceedings ISPRA Sinkholes, APAT, 20–21 May 2004, Rome, Italy, pp. 390–397.
  17. Faccenna, C., Florindo, F., Funiciello, R. and Lombardi, S. (1993) Tectonic setting and sinkhole features: case histories from western Central Italy. Quaternary Proceedings, 3, 47–56.
    [Google Scholar]
  18. Fäh, D., Kind, F. and Giardini, D. (2001) A theoretical investigation of average H/V ratios. Geophysical Journal International, 145, 535–549. https://doi.org/10.1046/j.1365‐246X.2001.01406.x.
    [Google Scholar]
  19. Foti, S., Hollender, F., Garofalo, F., Albarello, D., Asten, M., Bard, P.‐Y.et al. (2018) Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project. Bulletin of Earthquake Engineering, 16, 2367–2420. https://doi.org/10.1007/s10518‐017‐0206‐7.
    [Google Scholar]
  20. Gélis, C., Revil, A., Cushing, M.E., Jougnot, D., Lemeille, F., Cabrera, J.A.et al. (2010) Potential of electrical resistivity tomography to detect fault zones in limestone and argillaceous formations in the experimental platform of Tournemire, France. Pure and Applied Geophysics, 167(11), 1405–1418. https://doi.org/10.1007/s00024‐010‐0097‐x.
    [Google Scholar]
  21. Günther, T. (2005) Inversion methods and resolution analysis for the 2D/3D reconstruction of resistivity structures from DC measurements. Ph.D. Thesis. Universitätsbibliothek der TU BAF. https://doi.org/10.23689/FIDGEO‐643.
  22. Hellel, M., Oubaiche, E.H., Chatelain, J.L., Machane, D., Bensalem, R., Guiller, B.et al. (2012) Basement mapping with single‐station and array ambient vibration data: delineating faults under Boumerdes City, Algeria. Seismological Research Letters, 83(5), 798–805. https://doi.org/10.1785/0220110142.
    [Google Scholar]
  23. Hilbich, C., Marescot, L., Hauck, C., Loke, M.H. and Mäusbacher, R. (2009) Applicability of electrical resistivity tomography monitoring to coarse blocky and ice‐rich permafrost landforms. Permafrost and Periglacial Processes, 20(3), 269–284. https://doi.org/10.1002/ppp.652.
    [Google Scholar]
  24. Hobiger, M., Bard, P.‐Y., Cornou, C. and Le Bihan, N. (2009) Single station determination of Rayleigh wave ellipticity by using the random decrement technique (RayDec). Geophysical Research Letters, 36, L14303, https://doi.org/10.1029/2009GL038863.
    [Google Scholar]
  25. Khalili, M. and Mirzakurdeh, A.V. (2019) Fault detection using microtremor data (HVSR‐based approach) and electrical resistivity survey. Journal of Rock Mechanics and Geotechnical Engineering, 11(2), 400–408. https://doi.org/10.1016/j.jrmge.2018.12.003.
    [Google Scholar]
  26. Konno, K. and Ohmachi, T. (1998) Ground‐motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88(1), 228–241.
    [Google Scholar]
  27. Loke, M.H. and Barker, R.D. (1996) Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method. Geophysical Prospecting, 44(1), 131–152. https://doi.org/10.1111/j.1365‐2478.1996.tb00142.x.
    [Google Scholar]
  28. Louie, J.N. (2001) Faster, better: shear‐wave velocity to 100 meters depth from refraction microtremor arrays. Bulletin of the Seismological Society of America, 91(2), 347–364. https://doi.org/10.1785/0120000098
    [Google Scholar]
  29. Marescot, L., Loke, M.H., Chapellier, D., Delaloye, R., Lambiel, C. and Reynard, E. (2003) Assessing reliability of 2D resistivity imaging in mountain permafrost studies using the depth of investigation index method. Near Surface Geophysics, 1(2), 57–67. https://doi.org/10.3997/1873‐0604.2002007.
    [Google Scholar]
  30. Menke, W. (1984) Geophysical Data Analysis: Discrete Inverse Theory. London: Academic Press. https://doi.org/10.1016/B978‐0‐12‐397160‐9.00001‐1.
    [Google Scholar]
  31. Moon, S.W., Subramaniam, P., Zhang, Y., Vinoth, G. and Ku, T. (2019) Bedrock depth evaluation using microtremor measurement: empirical guidelines at weathered granite formation in Singapore. Journal of Applied Geophysics, 171, 103866. https://doi.org/10.1016/j.jappgeo.2019.103866.
    [Google Scholar]
  32. Nyquist, J.E., Peake, J.S. and Roth, M.J. (2007) Comparison of an optimized resistivity array with dipole‐dipole soundings in karst terrain. Geophysics, 72(4), F139–F144. https://doi.org/10.1190/1.2732994.
    [Google Scholar]
  33. Oldenburg, D.W. and Li, Y. (1999) Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64(2), 403–416. https://doi.org/10.1190/1.1444545.
    [Google Scholar]
  34. Park, C.B., Miller, R.D. and Xia, J. (1999) Multichannel analysis of surface waves. Geophysics, 64, 800–808. https://doi.org/10.1190/1.1444590.
    [Google Scholar]
  35. Parker, R.L. (1994) Geophysical Inverse Theory (Vol. 1). Princeton University Press.
    [Google Scholar]
  36. Petitta, M. (2009) Hydrogeology of the middle valley of the Velino River and of the S. Vittorino Plain (Rieti, Central Italy). Italian Journal of Engineering Geology and Environment, 1, 157–181. https://doi.org/10.4408/IJEGE.2009‐01.O‐09.
    [Google Scholar]
  37. Pischiutta, M., Fondriest, M., Demurtas, M., Magnoni, F., Di Toro, G. and Rovelli, A. (2017) Structural control on the directional amplification of seismic noise (Campo Imperatore, central Italy). Earth and Planetary Science Letters, 471, 10–18. https://doi.org/10.1016/j.epsl.2017.04.017.
    [Google Scholar]
  38. Roten, D., Fäh, D., Cornou, C. and Giardini, D. (2006) Two‐dimensional resonances in Alpine valleys identified from ambient vibration wavefields. Geophysical Journal International, 165(3), 889–905. https://doi.org/10.1111/j.1365‐246X.2006.02935.x.
    [Google Scholar]
  39. Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A. and Richard, G. (2005) Electrical resistivity survey in soil science: a review. Soil and Tillage research, 83(2), 173–193. https://doi.org/10.1016/j.still.2004.10.004.
    [Google Scholar]
  40. Wardrop, D.R. (1999) A study on the accuracy of sand and gravel reserve estimates. The Quarterly Journal of Engineering Geology, 32(1), 81–86. https://doi.org/10.1144/GSL.QJEG.1999.032.P1.06
    [Google Scholar]
  41. Wathelet, M., Chatelain, J.L., Cornou, C., Di Giulio, G., Guillier, B., Ohrnberger, M. and Savvaidis, A. (2020) Geopsy: a user‐friendly open‐source tool set for ambient vibration processing. Seismological Research Letters, 91(3), 1878–1889. https://doi.org/10.1785/0220190360.
    [Google Scholar]
  42. Whiteley, R.J. and Greenhalgh, S.A. (1979) Velocity inversion and the shallow seismic refraction method. Geoexploration, 17(2), 125–141. https://doi.org/10.1016/0016‐7142(79)90036‐X.
    [Google Scholar]
  43. Yamakawa, Y., Kosugi, K., Masaoka, N., Sumida, J., Tani, M. and Mizuyama, T. (2012) Combined geophysical methods for detecting soil thickness distribution on a weathered granitic hillslope. Geomorphology, 145–146, 56–69. https://doi.org/10.1016/j.geomorph.2011.12.035.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12147
Loading
/content/journals/10.1002/nsg.12147
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Electrical resistivity tomography; Faults; Geohazard; H/V spectral ratio; Surface wave

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error