1887
Volume 19, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

ABSTRACT

A combination of electrical resistivity tomography (ERT) and magnetic gradiometry was selected to examine a hypothesis concerning the presence of remains of one of the oldest archaeological churches in the Rhineland, located in Neuss‐Norf, Germany. The gradiometer survey was carried out to measure the vertical gradient of the magnetic field using a proton precession magnetometer along several profiles. The magnetic data were reduced to the magnetic pole; then analytic signal and power spectrum techniques were applied. The ERT survey was based on the magnetic results, and both Wenner and dipole–dipole configurations were employed to collect the apparent resistivity data along 12 ERT profiles. The field ERT data from these two arrays were merged into one dataset to form a non‐conventional mixed array. The robust (blocky) inversion technique was applied to the resistivity data in order to derive the two‐dimensional resistivity distribution of the subsurface. Despite the noisy surroundings, the magnetic survey was able to give an indication of potential walls of the ancient church in addition to several subsurface magnetic sources. Moreover, highly resistivity anomalies were observed within the first 1–2 m of the subsurface soil and were interpreted as possible remains of man‐made structures. This depth range was also confirmed by the spectral analysis of the magnetic data. A strong consistency between the two methods was observed in some locations of the site. In addition, the ERT measurements confirm and complement most of the magnetic results. We successfully detected anomalous zones that could be associated with the walls of at least one ancient church building in addition to several possible archaeological structures in the survey area.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12172
2021-09-12
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/nsg/19/5/nsg12172.html?itemId=/content/journals/10.1002/nsg.12172&mimeType=html&fmt=ahah

References

  1. ABEM (2010) ABEM instruction manual, Terrameter SAS 4000 /SAS 1000, 2010‐06‐04, ABEM Printed Matter No. 93109. https://wwwguidelinegeoc.cdn.triggerfish.cloud/uploads/2016/03/Manual_Terrameter.pdf.
  2. Akca, İ., Balkaya, Ç., Pülz, A., Alanyalı, H.S. and Kaya, M.A. (2019) Integrated geophysical investigations to reconstruct the archaeological features in the episcopal district of Side (Antalya, Southern Turkey). Journal of Applied Geophysics, 163, 22–30.
    [Google Scholar]
  3. Arisoy, M. and Dikmen, Ü. (2013) Edge detection of magnetic sources using enhanced total horizontal derivative of the Tilt angle. Bulletin of the Earth Sciences Application and Research Centre of Hacettepe University, 34(1), 73–82.
    [Google Scholar]
  4. Ayad, A. and Bakkali, S. (2018) Analysis of the magnetic anomalies of buried archaeological ovens of Aïn Kerouach (Morocco). International Journal of Geophysics, 2018, 9741950. https://doi.org/10.1155/2018/9741950.
    [Google Scholar]
  5. Baranov, V. and Naudy, H. (1964) Numerical calculation of the formula for reduction to the magnetic pole. Geophysics, 22, 359–383.
    [Google Scholar]
  6. Batayneh, A., Khataibeh, J., Alrshdan, H., Tobasi, U. and Al‐Jahed, N. (2007) The use of microgravity, magnetometry and resistivity surveys for the characterization and preservation of an archaeological site at Umm er‐Rasas. Jordan. Archaeological Prospection, 14(1), 60–70.
    [Google Scholar]
  7. Berge, M.A. and Drahor, M.G. (2011) Electrical resistivity tomography investigations of multilayered archaeological settlements: part i – modelling. Archaeological Prospection, 18, 159–171.
    [Google Scholar]
  8. Bevan, B.W. (2006) Geophysical exploration for buried buildings. Historical Archaeology, 40(4), 27–50. https://doi.org/10.1007/BF03376739.
    [Google Scholar]
  9. Bhattacharyya, B.K. (1966) Continuous spectrum of total magnetic field anomaly due to a rectangular prismatic body. Geophysics, 31(1), 97–121.
    [Google Scholar]
  10. Billings, S.D., Pasion, C., Walker, S. and Beran, L. (2006) Magnetic models of unexploded ordnance. IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2115–2124. https://doi.org/10.1109/TGRS.2006.872905.
    [Google Scholar]
  11. Boele, A. (1997) Die St. Lambertus Kapelle in Ramrath. Altehrwürdige Gebetsstätte und kunsthistorisches Kleinod. Beiträge zur Geschichte der Gemeinde Rommerskirchen, Bd. II. Dormagen: Verlag Rommerskirchen (in German).
  12. Cardarelli, E., Fischanger, F. and Piro, S. (2008) Integrated geophysical survey to detect buried structures for archaeological prospecting. A case‐history at Sabine Necropolis (Rome, Italy). Near Surface Geophysics, 6(26), 15–20.
    [Google Scholar]
  13. Cassano, E. and Rocca, F. (1975) Interpretation of magnetic anomalies using spectral estimation techniques. Geophysical Prospecting, 23(4), 663–681.
    [Google Scholar]
  14. Caminale, M. and Gallo, D. (2008) High‐resolution magnetic survey in a quasi‐urban environment. Near Surface Geophysics, 6(2), 97–103.
    [Google Scholar]
  15. Claerbout, J.F. and Muir, F. (1973) Robust modeling with erratic data. Geophysics, 38, 826–844.
    [Google Scholar]
  16. Cozzolino, M., Di Giovanni, E., Mauriello, P., Piro, S. and Zamuner, D. (2018) Geophysical Methods for Cultural Heritage Management. Cham, Switzerland: Springer International Publishing, 211 p.
    [Google Scholar]
  17. Dahlin, T. and Zhou, B. (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophysical Prospecting, 52, 379–398.
    [Google Scholar]
  18. Di Maio, R., La Manna, M. and Piegari, E. (2016) 3D reconstruction of buried structures from magnetic, electromagnetic and ERT data: Example from the archaeological site of Phaistos (Crete, Greece). Archaeological Prospection, 23(1), 3–13.
    [Google Scholar]
  19. Drahor, M.G. (2019) Integrated geophysical investigations in archaeological sites: case studies from Turkey. In: G.El‐Qady and M.Metwaly ((Eds.) Archaeogeophysics – State of the Art and Case Studies. Cham, Switzerland: Springer International Publishing, pp. 27–68.
    [Google Scholar]
  20. Drahor, M.G., Berge, M.A., Kurtulmuş, T.Ö., Hartmann, M. and Speidel, M.A. (2008) Magnetic and electrical resistivity tomography investigations in a Roman legionary camp site (Legio IV Scythica) in Zeugma, Southeastern Anatolia, Turkey. Archaeological Prospection, 15(3), 159–186.
    [Google Scholar]
  21. El Emam, A., Abdallatif, T., Suh, M. and Odah, H. (2014) Delineation of Egyptian mud bricks using magnetic gradiometer techniques. Arabian Journal of Geosciences, 7, 489–503.
    [Google Scholar]
  22. El‐Qady, G., Metwaly, M. and Drahor, M.G. (2019) Geophysical techniques applied in archaeology. In: G.El‐Qady and M.Metwaly ((Eds.) Archaeogeophysics – State of the Art and Case Studies. Springer International Publishing, 1–25.
    [Google Scholar]
  23. Emsbach, K. and Tauch, M. (1986) Kirchen, Klöster und Kapellen im Kreis Neuss., Köln: Rheinland‐Verlag, 192 (in German)
  24. Epov, M.I., Molodin, V.I., Manshtein, A.K., Balkov, E.V., Dyad'kov, P.G., Matasova, G.G., et al. (2016) Integrated archeological and geophysical studies in West Siberia. Russian Geology and Geophysics, 57(3), 473–482.
    [Google Scholar]
  25. Fauchard, C., Saley, A.D., Camerlynck, C., Fargier, Y., Antoine, R. and Thérain, P.‐F. (2018) Discovery of the Romanesque church of the Abbey of our lady of Bec (Le Bec‐Hellouin, Normandy, France) by means of geophysical methods. Archaeological Prospection, 25(4), 315–328.
    [Google Scholar]
  26. Fedi, M., Quarta, T. and De Santis, A. (1997) Inherent power–law behavior of magnetic field power spectra from Spector and Grant ensemble. Geophysics, 62(4), 1143–1150.
    [Google Scholar]
  27. Fischer, J. (1989) Unser Norf, Stadtsparkasse Neuss. Neusser Druckerei und Verlag, Neuss, Germany: Neusser Druckerei und Verlag (in German).
    [Google Scholar]
  28. Florio, G., Cella, F., Speranza, L., Castaldo, R., Benoit, R.P. and Palermo, R. (2019) Multiscale techniques for 3D imaging of magnetic data for archaeo‐geophysical investigations in the Middle East: The case of Tell Barri (Syria). Archaeological Prospection, 26(4), 379–395.
    [Google Scholar]
  29. Geologischer Dienst NRW (1931) Geologische Karte von Preußen und benachbarten deutschen Ländern, Blatt 4806 Neuss. Accessed 12 February 2020. Data licence Germany– attribution –Version 2.0 (in German).
  30. Geologischer Dienst NRW (1983) Hydrogeologische Karte von Nordrhein‐Westfahlen, Blatt 4806 Neuss. Accessed 12 February 2020. Data licence Germany – attribution – Version 2.0 (in German).
  31. Getaneh, A., Haile, T. and Sernicola, L. (2018) Three‐dimensional modelling of a pre‐Aksumite settlement at the archaeological site of Seglamen, Aksum, northern Ethiopia using integrated geophysical techniques. Archaeological Prospection, 25(3), 231–241.
    [Google Scholar]
  32. Ghazala, H.H., Ibraheem, I.M., Haggag, M. and Lamees, M. (2018) An integrated approach to evaluate the development possibility around Sohag governorate, Egypt using potential field data. Arabian Journal of Geosciences, 11, 194. https://doi.org/10.1007/s12517‐018‐3535‐1.
    [Google Scholar]
  33. Gündoğdu, N.Y., Candansayar, M.E. and Genç, E. (2017) Rescue archaeology application: Investigation of Kuriki mound archaeological area (Batman, SE Turkey) by using direct current resistivity and magnetic methods. Journal of Environmental and Engineering Geophysics, 22(2), 177–189.
    [Google Scholar]
  34. Hahn, A., Kind, E.G. and Mishra, D.C. (1976) Depth estimation of magnetic sources by means of Fourier amplitude spectra. Geophysical Prospecting, 24(2), 287–306.
    [Google Scholar]
  35. Hawamdeh, A., Jaradat, R. and Alsaad, Z. (2015) Integrated application of geophysical methods for investigation of the Al‐Berktain archaeological site in the city of Jerash. Jordan. Environmental Earth Sciences, 73(7), 3665–3674.
    [Google Scholar]
  36. Hegyi, A., Vernica, M.‐M. and Drăguţ, L. (2019) An object‐based approach to support the automatic delineation of magnetic anomalies. Archaeological Prospection, 27(1), 3–12. https://doi.org/10.1002/arp.1752.
    [Google Scholar]
  37. Hinze, W.J., Von Frese, R.R.B. and Saad, A.H. (2013) Gravity and Magnetic Exploration: Principles, Practices, and Applications. Cambridge University Press.
    [Google Scholar]
  38. Ibraheem, I.M., Haggag, M. and Tezkan, B. (2019a) Edge detectors as structural imaging tools using aeromagnetic data: A case study of Sohag area, Egypt. Geosciences, 9(5), 211.
    [Google Scholar]
  39. Ibraheem, I., Tezkan, B. and Bergers, R. (2019b) Imaging of a waste deposit site near Cologne city, Germany using magnetic and ERT methods. 25th European Meeting of Environmental and Engineering Geophysics, Near Surface Geoscience Conference & Exhibition, The Hague, The Netherlands. https://doi.org/10.3997/2214‐4609.201902492.
  40. Ibraheem, I.M., Gurk, M., Tougiannidis, N. and Tezkan, B. (2018a) Subsurface imaging of the Neogene Mygdonian basin, Greece using magnetic data. Journal of Pure and Applied Geophysics, 175(8), 2955–2973.
    [Google Scholar]
  41. Ibraheem, I.M., Elawadi, E.A. and El‐Qady, G.M. (2018b) Structural interpretation of aeromagnetic data for the Wadi El Natrun area, Northwestern Desert, Egypt. Journal of African Earth Sciences, 139, 14–25.
    [Google Scholar]
  42. Ibraheem, I.M., Tezkan, B. and Bergers, R. (2021) Integrated Interpretation of magnetic and ERT data to characterize a landfill in the north‐west of Cologne, Germany. Pure and Applied Geophysics, https://doi.org/10.1007/s00024‐021‐02750‐x
    [Google Scholar]
  43. Isles, D.J. and Rankin, L.R. (2013) Geological Interpretation of Aeromagnetic Data. Canberra, Australia: CSIRO, 365 p.
    [Google Scholar]
  44. Jeng, Y., Lee, Y.L., Chen, C.Y. and Lin, M.J. (2003) Integrated signal enhancements in magnetic investigation in archaeology. Journal of Applied Geophysics, 53, 31–48.
    [Google Scholar]
  45. Karaaslan, H. and Karavul, C. (2018) Usefulness of electrical and magnetic methods in finding buried structure of the Alabanda Ancient Cistern in Çine Town, Aydın City, Turkey. Arabian Journal of Geosciences, 11, 178.
    [Google Scholar]
  46. Kaufmann, O. and Quinif, Y. (2001) An application of cone penetration tests and combined array 2D electrical resistivity to delineate cover‐collapse sinkhole prone areas. In: B.F.Beck and J.G.Herring (Eds) Geotechnical and Environmental Applications of Karst Geology and Hydrology. Rotterdam, the Netherlands: Balkema, pp. 359–364.
    [Google Scholar]
  47. Kivior, I. and Boyd, D. (1998) Interpretation of the aeromagnetic experimental survey in the Eromanga/Cooper basin. Canadian Journal of Exploration Geophysics, 34, 58–66.
    [Google Scholar]
  48. Křivánek, R. (2019) The contribution of new geophysical measurements at the previously excavated Neolithic rondel area near Bylany, central Bohemia. Archaeological Prospection, 27, 39–52. https://doi.org/10.1002/arp.1755.
    [Google Scholar]
  49. Lacomblet, T.J. (1840) Urkundenbuch für die Geschichte des Niederrheins oder des Erzstifts Cöln, der Fürstentümer Jülich und Berg, Geldern, Meurs, Cleve und Mark, und der Reichsstifte Elten, Essen und Werden. Aus den Quellen in dem Königlichen Provinzial‐Archiv zu Düsseldorf und in den Kirchen‐ und Stadtarchiven der Provinz. Erster Band, Von dem Jahr 779 bis 1200 einschliesslich, Reprinted 1966, 1, Aalen, 18. Düsseldorf : Wolf (in German).
  50. Landesarchiv, N.R.W. (2020) Abtlg. Rheinland, Reichskammergericht AA 0627, Teil VI, Aktenzeichen: N 410/1119. Accessed at https://www.archive.nrw.de [accessed 25 February 2020] (in German).
  51. Linsser, H. (1970) Remarks on the use of the magnetic gradiometer in oil exploration. Geophysical Prospecting, 18(1), 119–133.
    [Google Scholar]
  52. Loke, M.H. (1999) Electrical imaging surveys for environmental and engineering studies: a practical guide to 2‐D and 3‐D surveys. Penang, Malaysia.
    [Google Scholar]
  53. Loke, M.H. (2000) Tutorial: 2‐D and 3‐D electrical imaging surveys. Penang, Malaysia: Geotomo Software, Penang, 129 p.
    [Google Scholar]
  54. Loke, M.H., (2020) Tutorial: 2‐D and 3‐D electrical imaging surveys. Penang, Malaysia: Geotomosoft Solutions, Malaysia. Available at: www.geotomosoft.com. Accessed 18 March 2020.
    [Google Scholar]
  55. Loke, M.H., Acworth, I. and Dahlin, T. (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34, 182–187.
    [Google Scholar]
  56. Lowrie, M. (2007) Fundamentals of Geophysics. New York: Cambridge University Press, 381 p.
    [Google Scholar]
  57. Lulewicz, J., Thompson, V.D. and DePratter, C.B. (2019) Mapping Spanish settlement at Santa Elena, 1566–1587: an integrated archaeogeophysical approach. Archaeological Prospection, 26(3), 239–250.
    [Google Scholar]
  58. Martinez, J., Rey, J., Gutiérrez, L.M., Novo, A., Ortiz, A.J., Alejo, M. and Galdón, J.M. (2015) Electrical resistivity imaging (ERI) and ground‐penetrating radar (GPR) survey at the Giribaile site (upper Guadalquivir valley. southern Spain. Journal of Applied Geophysics, 123, 31–48.
    [Google Scholar]
  59. Marzinkowski, H. (2020) Museum zeigt restaurierte Grabbeigaben, 11.02.2020. Available at: https://rp‐online.de/nrw/staedte/neuss/clemens‐sels‐museum‐in‐neuss‐zeigt‐restaurierte‐grabbeigaben‐aus‐dem‐7‐jahrhundert_aid‐48740277. (in German). Accessed 19 February 2020.
  60. Metzdorf, J. (2019) Die Straßen von Neuss, Lexikon zur Geschichte der Neusser Stadtteile, der Straßen, Wege, Plätze und ihrer Namen. Neuss: Schriftenreihe des Stadtarchivs Neuss, Bd. 22, Stadt Neuss Stadtarchiv, 854 Seiten (in German).
  61. Milsom, J. and Eriksen, A. (2011) Field Geophysics, 4th edition. Chichester, UK: Wiley‐Blackwell, 304 p.
    [Google Scholar]
  62. Müller, C., Woelz, S., Ersoy, Y., Boyce, J., Jokisch, T., Wendt, G. and Rabbel, W. (2009) Ultra‐high‐resolution marine 2D–3D seismic investigation of the Liman Tepe/Karantina Island archaeological site (Urla/Turkey). Journal of Applied Geophysics, 68(1), 124–134.
    [Google Scholar]
  63. Nabighian, M.N. (1972) The analytic signal of two‐dimensional magnetic bodies with polygonal cross‐section: Its properties and use for automated anomaly interpretation. Geophysics, 37(3), 507–517.
    [Google Scholar]
  64. Orlando, L., Michetti, L.M., Marchesini, B.B., Papeschi, P. and Giannino, F. (2019) Dense georadar survey for a large‐scale reconstruction of the archaeological site of Pyrgi (Santa Severa, Rome). Archaeological Prospection, 26(4), 369–377.
    [Google Scholar]
  65. Oswin, J. (2009) A Field Guide to Geophysics in Archaeology. Chichester, UK: Springer‐Praxis, 221 p.
    [Google Scholar]
  66. Piro, S. (2009) Introduction to geophysics for archaeology. In: S.Campana and S.Piro ((Eds.) Seeing the Unseen – Geophysics and Landscape Archaeology. London: Taylor and Francis Group, 27–64.
    [Google Scholar]
  67. Piro, S., Papale, E., Zamuner, D. and Kucukdemirci, M. (2019) Multimethodological approach to investigate urban and suburban archaeological sites. In R.Persico, S.Piro and N.Linford. Innovation in Near‐Surface Geophysics – Instrumentation, Application, and Data Processing Methods. Elsevier, pp. 461–504.
    [Google Scholar]
  68. Pütz, B. (1974) Nor apa, Norpe, Norf – Ein Dorf wächst in Jahrtausenden. Aufsätze und Berichte zur Geschichte einer rheinischen Wohn‐ und Industriegemeinde. Stadt Neuss, 336 S (in German).
  69. Quesnel, Y., Jrad, A., Mocci, F., Gattacceca, J., Mathé, P.‐E., Parisot, J.‐C., et al. (2011) Geophysical signatures of a Roman and early medieval Necropolis. Archaeological Prospection, 18(2), 105–115.
    [Google Scholar]
  70. Rabbel, W., Erkul, E., Stümpel, H., Wunderlich, T., Pašteka, R., Papco, J., et al. (2014) Discovery of a Byzantine Church in Iznik/Nicaea, Turkey: an educational case history of geophysical prospecting with combined methods in urban areas. Archaeological Prospection, 22(1), 1–20.
    [Google Scholar]
  71. Rajagopalan, S. (2003) Analytic signal vs. reduction to pole: solutions for low magnetic latitudes. Exploration Geophysics, 34(4), 257–262.
    [Google Scholar]
  72. Remmen, K. (2013) Hieronymus Isenberg: Pfarrer in St. Peter Rosellen bei Neuss 1626–1639 /Instructiones de omnibus Ecclesiae Rosellanae iuribus A° Dni 1640 absolutae [transliteration of handwriting], Libelli Rhenani 46, Köln: Erzbischöfl. Diözesan‐ und Dombibliothek, pp. 29–81 (in German).
  73. Reynolds, J.M. (2011) An Introduction to Applied and Environmental Geophysics. 2nd edition, Wiley‐Blackwell, Chichester, UK: Wiley‐Blackwell, 712 p.
    [Google Scholar]
  74. Rizzo, E., Chianese, D. and Lapenna, V. (2005) Magnetic, GPR and geoelectrical measurements for studying the archaeological site of ‘Masseria Nigro’ (Viggiano, southern Italy). Near Surface Geophysics, 3(1), 13–19.
    [Google Scholar]
  75. Roest, W.R., Verhoef, J. and Pilkington, M. (1992) Magnetic interpretation using the 3‐D analytic signal. Geophysics, 57(1), 116–125.
    [Google Scholar]
  76. Sapia, V., Florindo, F., Marchetti, M. and Di Nezza, M. (2017) Fast geophysical prospection to map the archaeological site of Cocciano: Preliminary results. Annals of Geophysics, 60, Fast Track 6. https://doi.org/10.4401/ag‐7406.
    [Google Scholar]
  77. Sanchez, V., Li, Y., Nabighian, M. and Wright, D. (2006) Relative importance of magnetic moments in UXO clearance applications. SEG Annual Meeting, New Orleans, Louisiana, pp. 1381–1385. https://doi.org/10.1190/1.2369777.
  78. Schmidt, A. (2009) Electrical and magnetic methods in archaeological prospection. In: S.Campana and S.Piro ((Eds.) Seeing the Unseen – Geophysics and Landscape Archaeology. Taylor and Francis Group, London: Taylor and Francis Group, pp. 67–81.
    [Google Scholar]
  79. Scollar, I., Tabbagh, A., Hesse, A. and Herzog, I. (1990) Archaeological Prospecting and Remote Sensing, Topics in Remote Sensing 2. Cambridge: Cambridge University Press, pp. 375–516.
    [Google Scholar]
  80. Sharma, P.V. (1997) Environmental and Engineering Geophysics. Cambridge: Cambridge University Press, pp. 78–79.
    [Google Scholar]
  81. Siegmund, S. (1998) Merowingerzeit am Niederrhein, Die frühmittelalterlichen Funde aus dem Regierungsbezierk Düsseldorf und dem Kreis Heinsberg, Band 34. Rheinische Ausgrabungen, Köln: Rheinland‐Verlag, pp. 335–336 (in German).
  82. Spector, A. and Grant, F.S. (1970) Statistical models for interpretation of aeromagnetic data. Geophysics, 35, 293–302.
    [Google Scholar]
  83. Telford, W.M., Geldart, L.P., Sheriff, R.E. and Keys, D.A. (1990) Applied Geophysics, 2nd edition. Cambridge, Cambridge University Press, 770 p.
    [Google Scholar]
  84. Tsokas, G.N., Tsourlos, P.I., Kim, J.‐H., Yi, M.‐J., Vargemezis, G., Lefantzis, M., et al. (2018) ERT imaging of the interior of the huge tumulus of Kastas in Amphipolis (northern Greece). Archaeological Prospection, 25(4), 347–361.
    [Google Scholar]
  85. Weber, C. (2020) LVR‐Amt für Bodendenkmalpflege im Rheinland. Information about the archaeological background of the area was obtained through personal communications.
  86. Weymouth, J.W. (1986) Archaeological site surveying program at the University of Nebraska. Geophysics, 51(3), 538–552
    [Google Scholar]
  87. Wolke, R. and Schwetlick, H. (1988) Iteratively reweighted least‐squares algorithms, convergence analysis, and numerical comparisons. SIAM Journal of Scientific and Statistical Computations, 9, 907–921.
    [Google Scholar]
  88. Yilmaz, S., Balkaya, Ç., Çakmak, O. and Oksum, E. (2019) GPR and ERT explorations at the archaeological site of Kılıç village (Isparta, SW Turkey). Journal of Applied Geophysics, https://doi.org/10.1016/j.jappgeo.2019.103859.
    [Google Scholar]
  89. Zhao, W., Forte, E., Pipan, M. and Tian, G. (2013) Ground penetrating radar (GPR) attribute analysis for archaeological prospection. Journal of Applied Geophysics, 97, 107–117.
    [Google Scholar]
  90. Zhou, B. and Dahlin, T. (2003) Properties and effects of measurement errors on 2D resistivity imaging surveying. Near Surface Geophysics, 1, 105–117.
    [Google Scholar]
  91. Zhou, W., Beck, B.F. and Adams, A.L. (2002) Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental Geology, 42, 922–928. https://doi.org/10.1007/s00254‐002‐0594‐z.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12172
Loading
/content/journals/10.1002/nsg.12172
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Archaeogeophysics; ERT; Magnetic; Mixed array; Norf ‐ Germany

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error