1887
Volume 21, Issue 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Detecting the top and base subsea permafrost from 2D seismic reflection data in shallow marine settings is a non‐trivial task due to the occurrence of strong free surface multiples. The potential to accurately detect permafrost layers on conventional 2D seismic reflection data is assessed through viscoelastic modelling. Reflection imaging of permafrost layers is examined through the evaluation of specific characteristics of the subsurface, acquisition parameters and their impact. Results show that limitations are related to the principles of the method, the intrinsic nature of the permafrost layers, and the acquisition geometry. The biggest challenge is the occurrence of free surface multiples that overprint the base permafrost reflection, with the worst‐case scenario the case of a thin layer of ice‐bonded sand. Wedge models suggest that if the base permafrost is dipping, it would intersect internal and free surface multiples of the seafloor and the top permafrost and be detected. Also, the amplitude ratio of the base permafrost reflection and the multiples decreases with the increasing thickness of permafrost. Therefore, the crosscutting relationship between the reflection at base permafrost reflection and the multiples might not be enough to detect the base permafrost for thicker permafrost layers. Finally, the experiment results show that, for partially ice‐bonded layers, the attenuation combined with the low reflectivity of the basal interface limits the likelihood to resolve the base permafrost, especially for thick permafrost layers.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12231
2023-01-18
2024-04-26
Loading full text...

Full text loading...

References

  1. Angelopoulos, M., Overduin, P.P., Miesner, F., Grigoriev, M.N. & Vasiliev, A.A. (2020) Recent advances in the study of Arctic submarine permafrost. Permafrost and Periglacial Processes, 31(3), 442–453.
    [Google Scholar]
  2. Bohlen, T. (2002) Parallel 3‐D viscoelastic finite difference seismic modelling. Computers and Geosciences, 28(8), 887–899.
    [Google Scholar]
  3. Brothers, L.L., Herman, B.M., Hart, P.E. & Ruppel, C.D. (2016) Subsea ice‐bearing permafrost on the U.S. Beaufort Margin: 1. Minimum seaward extent defined from multichannel seismic reflection data. Geochemistry, Geophysics, Geosystems, 17(11), 4354–4365.
    [Google Scholar]
  4. Butler, P. (2012) Strong noise – removal and replacement on seismic data. CSEG Recorder, 37(9), 1–9.
    [Google Scholar]
  5. Carlson, D., Söllner, W., Tabti, H., Brox, E. & Widmaier, M. (2007) Increased resolution of seismic data from a dual‐sensor streamer cable. SEG Technical Program Expanded Abstracts, 26(1), 994–998.
    [Google Scholar]
  6. Collett, T.S. & Dallimore, S.R. (2000) Permafrost‐associated gas hydrate. In: Max, M.D. (Ed.) Natural gas hydrate. coastal systems and continental margins, vol. 5. New York: Springer, pp. 43–60.
    [Google Scholar]
  7. Courant, R., Friedrichs, K. & Lewy, H. (1967) On the partial difference equations of mathematical physics. IBM Journal of Research and Development, 11(2), 215–234.
    [Google Scholar]
  8. Dix, C.H. (1955) Seismic velocities from surface measurements. Geophysics, 20(1), 68–86.
    [Google Scholar]
  9. Dixon, J., Morrell, G.R., Dietrich, J.R., Taylor, G.C., Procter, R.M., Conn, R.F. et al. (1994) Petroleum resources of the Mackenzie Delta and Beaufort Sea. Geological Survey of Canada, Bulletin 474.
    [Google Scholar]
  10. Dou, S. (2015) Field and laboratory investigations on seismic properties of unconsolidated saline permafrost. PhD thesis. University of California, Berkeley.
  11. Dou, S., Nakagawa, S., Dreger, D. & Ajo‐Franklin, J. (2016) A rock‐physics investigation of unconsolidated saline permafrost: P‐wave properties from laboratory ultrasonic measurements. Geophysics, 81(1), WA233–WA245.
    [Google Scholar]
  12. Dragoset, B., Verschuur, E., Moore, I. & Bisley, R. (2010) A perspective on 3D surface‐related multiple elimination. Geophysics, 75(5), 75A245–75A261.
    [Google Scholar]
  13. Dutta, N.C. & Odé, H. (1979) Attenuation and dispersion of compressional waves in fluid‐filled porous rocks with partial gas saturation (White model) ‐ Part II: results. Geophysics, 44(11), 1789–1805.
    [Google Scholar]
  14. Elboth, T., Vik Presterud, I. & Hermansen, D. (2010) Time‐frequency seismic data de‐noising. Geophysical Prospecting, 58(3), 441–453.
    [Google Scholar]
  15. Evans, B.J. (1997) A handbook for seismic data acquisition in exploration. SEG Geophysical Monograph Series. Houston, TX: SEG.
  16. Fabien‐Ouellet, G. (2019) Seismic modelling of undersea permafrost in the Beaufort Sea: the impact of velocity heterogeneity and attenuation. Polytechnique Montréal Project Report.
  17. Fabien‐Ouellet, G., Duchesne, M.J. & Bustamante Restrepo, J. (2020) Seismic characterization of subsea permafrost: insights from viscoelastic modeling. SEG Technical Program Expanded Abstracts, 2020, 1024–1028.
    [Google Scholar]
  18. Fabien‐Ouellet, G., Gloaguen, E. & Giroux, B. (2017) Time‐domain seismic modeling in viscoelastic media for full waveform inversion on heterogeneous computing platforms with OpenCL. Computers and Geosciences, 100, 142–155.
    [Google Scholar]
  19. Foster, D.J. & Mosher, C.C. (1992) Suppression of multiple reflections using the Radon transform. Geophysics, 57(3), 386–395.
    [Google Scholar]
  20. Gavrilov, A., Pavlov, V., Fridenberg, A., Boldyrev, M., Khilimonyuk, V., Khilimonyuk, V. et al. (2020) The current state and 125kyr history of permafrost on the Kara Sea shelf: modeling constraints. Cryosphere, 14(6), 1857–1873.
    [Google Scholar]
  21. Graves, J., Chen, Z., Dietrich, J.R. & Dixon, J. (2010) Seismic interpretation and structural analysis of the Beaufort–Mackenzie Basin. Geological Survey of Canada. Open File, 6217.
    [Google Scholar]
  22. Gwiazda, R., Paull, C.K., Dallimore, S.R., Melling, H., Jin, Y.K., Hong, J.K. et al. (2018) Freshwater seepage into sediments of the shelf, shelf edge, and continental slope of the Canadian Beaufort Sea. Geochemistry, Geophysics, Geosystems, 19(9), 3039–3055.
    [Google Scholar]
  23. Harris, S.A., French, H.M., Heginbottom, J.A., Johnston, G.H., Ladanyi, B., Sego, D.C. et al. (1988) Glossary of permafrost and related ground‐ice terms. Technical Memorandum: National Research Council of Canada.
  24. Hatfield, W.G. & MacDonald, J.R. (1982) Permafrost determination by velocity analyses. Journal of the Canadian Society of Exploration Geophysicists, 18(1), 14–22.
    [Google Scholar]
  25. Hunter, J.A., Neave, K.G., MacAuley, H.A., Hobson, G.D. (1978) Interpretation of sub‐seabottom permafrost in the Beaufort Sea by seismic methods Part 1: seismic refraction methods. Proceedings of the 3rd International Conference on Permafrost, 514–520.
  26. Hunter, J.A.M., Judge, A.S., MacAuley, H.A., Good, R.L., Gagne, R.M. & Burns, R.A. (1976) Permafrost and frozen sub‐seabottom materials in the Southern Beaufort Sea. Beaufort Sea Technical Report #22.
  27. Jin, Y.K. & Dallimore, S.R. (2016) ARA05C marine research expedition, Canada–Korea–USA Beaufort Sea Geoscience Research Program: summary of 2014 activities. Geological Survey of Canada, Open File 7999.
  28. Jin, Y.K., Côté, M.M., Paull, C.K. & King, E.L. (2018) 2017 Korea–Canada–U.S.A. Beaufort Sea (offshore Yukon and Northwest Territories) research program: 2017 Araon expedition (ARA08C) cruise report. Geological Survey of Canada, Open File 8406.
  29. Jin, Y.K., Riedel, M., Hong, J.K., Nam, S.I., Jung, J.Y., Ha, S.Y. et al. (2015) Overview of field operations during a 2013 research expedition to the southern Beaufort Sea on the RV Araon. Geological Survey of Canada, Open File 7754.
  30. Johnston, G.H. (1981) Permafrost: engineering design and construction. Toronto, Canada: John Wiley & Sons.
    [Google Scholar]
  31. Kallweit, R.S. & Wood, L.C. (1982) The limits of resolution of zero‐phase wavelets. Geophysics, 47(7), 1035–1046.
    [Google Scholar]
  32. Kang, S.‐G., Jin, Y.K., Jang, U., Duchesne, M.J., Shin, C., Kim, S. et al. (2021) Imaging the P‐wave velocity structure of Arctic subsea permafrost using Laplace‐domain full‐waveform inversion. Journal of Geophysical Research – Earth Surface, 126(3), e2020JF005941.
    [Google Scholar]
  33. King, M. (1977) Acoustic velocities and electrical properties of frozen sandstones and shales. Canadian Journal of Earth Sciences, 14(5), 1004–1013.
    [Google Scholar]
  34. King, M., Zimmerman & Corwin, R. (1988) Seismic and electrical properties of unconsolidated permafrost 1. Geophysical Prospecting, 36(4), 349–364.
    [Google Scholar]
  35. Klein, G., Bohlen, T., Theilen, F., Kluger, S. & Forbriger, T. (2005) Acquisition and inversion of dispersive seismic waves in shallow marine environments. Marine Geophysical Researches, 26(2–4), 287–315.
    [Google Scholar]
  36. Komatitsch, D. & Martin, R. (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics, 72(5), SM155–SM167.
    [Google Scholar]
  37. Liu, J., Wei, X.‐C., Ji, Y.‐X., Chen, T.‐S., Liu, C.‐Y., Zhang, C.‐T. & Dai, M.‐G. (2011) An analysis of seismic scattering attenuation in a random elastic medium. Applied Geophysics, 8(4), 344–354.
    [Google Scholar]
  38. MacAulay, H. & Hunter, J.A.M. (1982) Detailed seismic refraction analysis of ice‐bonded permafrost layering in the Canadian Beaufort Sea: Proceedings, 4th Canadian Permafrost Conference: National Research Council Canada. The Roger JE Brown Memorial, pp. 256–267.
    [Google Scholar]
  39. Mackay, J.R. (1972) Offshore permafrost and ground ice, Southern Beaufort Sea, Canada. Canadian Journal of Earth Sciences, 9(11), 1550–1561.
    [Google Scholar]
  40. Matsushima, J., Suzuki, M., Kato, Y. & Rokugawa, S. (2016) Ultrasonic measurements of attenuation and velocity of compressional and shear waves in partially frozen unconsolidated sediment and synthetic porous rock. Geophysics, 81(2), D141–D153.
    [Google Scholar]
  41. Mavko, G. & Mukerji, T. (1998) Bounds on low‐frequency seismic velocities in partially saturated rocks. Geophysics, 63(3), 918–924.
    [Google Scholar]
  42. Moczo, P. & Kristek, J. (2005) On the rheological models used for time‐domain methods of seismic wave propagation. Geophysical Research Letters, 32(1), L01306‐1‐5.
    [Google Scholar]
  43. Moldoveanu, N., Combee, L., Egan, M., Hampson, G. & Abriel, W. (2007) Over/under towed‐streamer acquisition: a method to extend seismic bandwidth to both higher and lower frequencies. The Leading Edge, 26(1), 41–58.
    [Google Scholar]
  44. Müller, T., Gurevich, B. & Lebedev, M. (2010) Seismic wave attenuation and dispersion resulting from wave‐induced flow in porous rocks—a review. Geophysics, 75(5), 75A147–175A164.
    [Google Scholar]
  45. O'Connor, M.J. (1980) Development of a proposed model to account for the surficial geology of the southern Beaufort Sea, Geological Survey of Canada Open File Report. 128 pp.
  46. Osterkamp, T.E. (2001) Sub‐sea permafrost. In: Thorpe, S.A. & Turekian, K.K. (Eds.) Encyclopedia of ocean sciences. Elsevier, pp. 2902–2912.
    [Google Scholar]
  47. Overduin, P.P., Haberland, C., Ryberg, T., Kneier, F., Jacobi, T., Grigoriev, M.N. & Ohrnberger, M. (2015) Submarine permafrost depth from ambient seismic noise. Geophysical Research Letters, 42(18), 7581–7888.
    [Google Scholar]
  48. Painter, S.L. (2011) Three‐phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications. Computational Geosciences, 15(1), 69–85.
    [Google Scholar]
  49. Parkhomenko, S.G. (1937) Sketch map of permafrost and frost depth in the USSR. Transactions, CNIIGAiK, issue 16.
  50. Paull, C., Dallimore, S., Hughes‐Clarke, J., Blasco, S., Lundsten, E., Ussler, W. III et al. (2011) Tracking the decomposition of submarine permafrost and gas hydrate under the shelf and slope of the Beaufort Sea. Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, Scotland: ICGH, 12pp.
    [Google Scholar]
  51. Poley, D.F., Lawton, D.C. & Blasco, S.M. (1989) Amplitude‐offset relationships over shallow velocity inversions. Geophysics, 54(9), 1114–1122.
    [Google Scholar]
  52. Portnov, A., Smith, A.J., Mienert, J., Cherkashov, G., Rekant, P., Semenov, P. et al. (2013) Offshore permafrost decay and massive seabed methane escape in water depths >20 m at the South Kara Sea shelf. Geophysical Research Letters, 40(15), 3962–3967.
    [Google Scholar]
  53. Pullan, S., Macaulay, H.A., Hunter, J.A.M., Good, R.L., Gagne, R.M. & Burns, R.A. (1987) Subsea permafrost zones determined from seismic refraction. In: Pelletier, B.R. (Ed.) Marine science atlas of the Beaufort Sea. Geology and Geophysics Geological Survey of Canada, Miscellaneous Report 40, pp. 37–38.
    [Google Scholar]
  54. Pyrak‐Nolte, L.J., Myer, L.R. & CookN.G.W. (1990) Transmission of seismic waves across single natural fractures. Journal of Geophysical Research: Solid Earth, 95(B6), 8617–8638.
    [Google Scholar]
  55. Riedel, M., Brent, T.A., Taylor, G., Taylor, A.E., Hong, J.‐K., Jin, Y.‐K. & Dallimore, S.R. (2017) Evidence for gas hydrate occurrences in the Canadian Arctic Beaufort Sea within permafrost‐associated shelf and deep‐water marine environments. Marine and Petroleum Geology, 81, 66–78.
    [Google Scholar]
  56. Robertson, J.O.A. (1996) A numerical free‐surface condition for elastic/viscoelastic finite‐difference modeling in the presence of topography. Geophysics, 61(6), 1921–1934.
    [Google Scholar]
  57. Rubino, J.G. & Holliger, K. (2012) Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International, 188(3), 1088–1102.
    [Google Scholar]
  58. Sherman, D., Kannberg, P. & Constable, S. (2017) Surface towed electromagnetic system for mapping of subsea Arctic permafrost. Earth and Planetary Science Letters, 460, 97–104.
    [Google Scholar]
  59. Shi, R.F., Zhang, L., Wei, Y., Yang, S.K., Zhang, Z.B., Fømyr, E. et al. (2010) Dual‐sensor imaging streamer acquisition improves seismic imaging offshore China. SEG Technical Program Expanded Abstracts, 21–25.
    [Google Scholar]
  60. Söllner, W., Brox, E., Widmaier, M. & Vaage, S. (2007) Surface‐related multiple suppression in dual sensor towed streamer data. SEG Technical Program Expanded Abstracts, 26(1), 2540–2544.
    [Google Scholar]
  61. Spetzler, H. & Anderson, D.L. (1968) The effect of temperature and partial melting on velocity and attenuation in a simple binary system. Journal of Geophysical Research, 73(18), 6051–6060.
    [Google Scholar]
  62. Taylor, A.E., Dallimore, S.D., Hill, P.R., Issler, D.R., Blasco, S. & Wright, F. (2013) Numerical model of the geothermal regime on the Beaufort Shelf, arctic Canada since the Last Interglacial. Journal of Geophysical Research: Earth Surface, 118(4), 2365–2379.
    [Google Scholar]
  63. Taylor, D.B. (2002) Fast modelling of marine surface multiples. Geophysical Prospecting, 50(3), 329–340.
    [Google Scholar]
  64. Van Groenestijn, G.J.A. & Verschuur, D.J. (2009) Estimation of primaries and near‐offset reconstruction by sparse inversion: marine data applications. Geophysics, 74(6), R119–R128.
    [Google Scholar]
  65. Verschuur, D.J., Berkhout, A.J. & Wapenaar, C.P.A. (1992) Adaptive surface‐related multiple elimination. Geophysics, 57(9), 1166–1177.
    [Google Scholar]
  66. Virieux, J. (1986) P‐SV wave propagation in heterogeneous media: velocity‐stress finite‐difference method. Geophysics, 52(4), 889–901.
    [Google Scholar]
  67. White, J.E. (1975) Computed seismic speeds and attenuation in rocks with partial gas saturation. Geophysics, 40(2), 224–232.
    [Google Scholar]
  68. Widess, M. (1973) How thin is a thin bed?Geophysics, 38(6), 1176–1180.
    [Google Scholar]
  69. Wu, Y., Nakagawa, S., Kneafsey, T.J., Dafflon, B. & Hubbard, S. (2017) Electrical and seismic response of saline permafrost soil during freeze–thaw transition. Journal of Applied Geophysics, 146, 16–26.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12231
Loading
/content/journals/10.1002/nsg.12231
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): 2D; modelling; reflection; seismic; shallow marine

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error