1887
Volume 67, Issue 8
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

Imaging a target zone below a salt body can be challenging because large velocity contrasts in the overburden between the salt and surrounding sediments generate internal multiples, which interfere with primary reflections from the target level in the imaging process. This can lead to an erroneous interpretation of reflections in the sub‐salt area if multiples are misinterpreted as primaries. The Marchenko redatuming method may enable imaging of the sub‐salt target area where the effect of the multiply‐scattering overburden is removed. This is achieved by creating a redatumed reflection response where virtual sources and receivers are located below the overburden using a macromodel of the velocity field and the surface reflection data. The accuracy of the redatumed data and the associated internal multiple removal, however, depends on the accurate knowledge of the source wavelet of the acquired reflection data. For the first time, we propose a method which can accurately and reliably correct the amplitudes of the reflection response in field data as required by the Marchenko method. Our method operates by iteratively and automatically updating the source function so as to cancel the most artefact energy in the focusing functions, which are also generated by the Marchenko method.

We demonstrate the method on a synthetic dataset and successfully apply it to a field dataset acquired in a deep‐water salt environment in the Gulf of Mexico. After the successful source wavelet estimation for the field dataset, we create sub‐salt target‐oriented images with Marchenko redatumed data. Marchenko images using the proposed source wavelet estimation show clear improvements, such as increased continuity of reflectors, compared to surface‐based images and to conventional Marchenko images computed without the inverted source wavelet. Our improvements are corroborated by evidence in the literature and our own synthetic results.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12822
2019-06-25
2020-04-07
Loading full text...

Full text loading...

References

  1. AbmaR. and KabirN.2006. 3D interpolation of irregular data with a POCS algorithm. Geophysics71, E91–E97.
    [Google Scholar]
  2. AlkhimenkovY.2017. Redatuming and quantifying attenuation from reflection data using the Marchenko equation. M.S. thesis, Delft University of Technology.
  3. AnderssonF. and CarlssonM.2013. Alternating projections on nontangential manifolds. Constructive Approximation38, 489–525.
    [Google Scholar]
  4. BaysalE., KosloffD.D. and SherwoodJ.W.C.1983. Reverse time migration. Geophysics48, 1514–1524.
    [Google Scholar]
  5. BeckerT.S., RavasiM., BrogginiF. and RobertssonJ.O.A.2018. Sparse inversion of the coupled Marchenko equations for simultaneous source wavelet and focusing functions estimation. 80th Conference and Exhibition, EAGE, Extended Abstracts, Th P9 15.
  6. BehuraJ., WapenaarK. and SniederR.2014. Autofocus imaging. Image reconstruction based on inverse scattering theory. Geophysics79, A19–A26.
    [Google Scholar]
  7. BrackenhoffJ.A.2016. Rescaling of incorrect source strength using Marchenko Redatuming. M.S. thesis, Delft University of Technology.
  8. BrogginiF., SniederR. and WapenaarK.2014a. Data‐driven wavefield focusing and imaging with multidimensional deconvolution. Numerical examples for reflection data with internal multiples. Geophysics79, WA107–WA115.
    [Google Scholar]
  9. BrogginiF., WapenaarK., van der NeutJ. and SniederR.2014b. Data‐driven Green's function retrieval and application to imaging with multidimensional deconvolution. Journal of Geophysical Research: Solid Earth119, 425–441.
    [Google Scholar]
  10. da Costa FilhoC.A., MelesG.A. and CurtisA.2017. Imaging with Marchenko focusing functions in acoustic and elastic media. 15th International Congress of the Brazilian Geophysical Society & EXPOGEF, 1361–1365.
  11. da Costa FilhoC.A., MelesG.A., CurtisA., RavasiM. and KritskiK.2018a. Imaging strategies using focusing functions with applications to a North Sea field. Geophysical Journal International213, 561–573.
    [Google Scholar]
  12. da Costa FilhoC.A., TantK., CurtisA., MulhollandA. and MoranC.2018b. Using laboratory experiments to develop and test new Marchenko and imaging methods. 88th Annual International Meeting, SEG, Expended Abstracts4352–4356.
    [Google Scholar]
  13. DokterE., MelesG.A., CurtisA. and WapenaarK.2017. Velocity analysis using surface‐seismic primaries‐only data obtained without removing multiples. 79th Conference and Exhibition, EAGE, Extended Abstracts, We B2 03.
  14. DukalskiM. and de VosK.2018. Marchenko inversion in a strong scattering regime including surface‐related multiples. Geophysical Journal International212, 760–776.
    [Google Scholar]
  15. DukalskiM., MarianiE. and de VosK.2018. Short Period Internal De‐multiple Using Energy and Causality Constrained Bandlimited Marchenko Redatuming. 88th Annual International Conference and Exhibition, EAGE, Extended Abstracts, We C 05.
  16. EtgenJ.T., FosterD.J. and ZhangY.2016. Introduction to the special section: subsalt imaging. The Leading Edge35, 226–227.
    [Google Scholar]
  17. GuittonA. and CamboisG.1999. Multiple elimination using a pattern‐recognition technique. The Leading Edge18, 92–98.
    [Google Scholar]
  18. GuittonA. and ClaerboutJ.2015. Nonminimum phase deconvolution in the log domain: a sparse inversion approach. Geophysics80, WD11–WD18.
    [Google Scholar]
  19. JiaX., GuittonA. and SniederR.2018. A practical implementation of subsalt Marchenko imaging with a Gulf of Mexico dataset. Geophysics83, S409–S419.
    [Google Scholar]
  20. KapoorJ., MoldevaneauN., EganM., O'BriainM., DestaD., AtakishiyevL., et al. 2007. Subsalt imaging: The RAZ‐WAZ experience. The Leading Edge26, 1414–1422.
    [Google Scholar]
  21. LeveilleJ.P., JonesI.A., ZhouZ‐Z, WangB. and LiuF.2011. Subsalt imaging for exploration, production, and development: a review. Geophysics76, WB3–WB20.
    [Google Scholar]
  22. MalcolmE.A., de HoopM.V. and CalandraH.2007. Identification of image artifacts from internal multiples. Geophysics72, S123–S132.
    [Google Scholar]
  23. McMechanG.A.1983. Migration by extrapolation of time‐dependent boundary values. Geophysical Prospecting31, 413–420.
    [Google Scholar]
  24. MelesG.A., da Costa FilhoC.A. and CurtisA.2017. Synthesising singly‐scattered waves (primaries) from multiply‐scattered data. 79th EAGE Conference and Exhibition 2017.
  25. MildnerC., BrogginiF., de VosK. and RobertssonJ.O.A.2017a. Source wavelet amplitude spectrum estimation using Marchenko focusing functions. 79th EAGE Conference and Exhibition 2017.
  26. MildnerC., BeckerT.S., de VosK., BrogginiF. and RobertssonJ.O.A.2017b. Source wavelet estimation using Marchenko focusing functions: Theory and laboratory data example. 87th Annual International Meeting, SEG, Expanded Abstracts, 5521–5525.
  27. MildnerC., BrogginiF. and RobertssonJ.O.A.2018. Source wavelet inversion for laterally‐varying scaling errors using Marchenko focusing functions. European Geosciences Union General Assembly 2018, EGU, Geophysical Research Abstracts, Vol. 20, EGU2018‐8908.
  28. MildnerC., BrogginiF., RobertssonJ.O.A., van ManenD.‐J. and GreenhalghS.2017c. Target‐oriented velocity analysis using Marchenko‐redatumed data. Geophysics82, R75–R86.
    [Google Scholar]
  29. MoczoP., RobertssonJ.O.A. and EisnerL.2007. The finite‐difference time‐domain method for modeling of seismic wave propagation. Advances in Geophysics48, 421–516.
    [Google Scholar]
  30. MuirF., DellingerJ., Etgen, J. and NicholsD.1992. Modeling elasticfields across irregular boundaries. Geophysics57, 1189–1193.
    [Google Scholar]
  31. RavasiM.2017. Rayleigh‐Marchenko redatuming for target‐oriented, true‐amplitude imaging. Geophysics82, S439–S452.
    [Google Scholar]
  32. RavasiM., VasconcelosI., KritskiA., CurtisA., da Costa FilhoC.A. and MelesG.A.2015. Marchenko imaging of Volve field, North Sea. 77th Conference and Exhibition, EAGE, Extended Abstracts, N10603.
  33. RavasiM., VasconcelosI.KritskiA., CurtisA., da Costa FilhoC.A. and MelesG.A.2016. Target‐oriented Marchenko imaging of a North Sea field. Geophysical Journal International205, 99–104.
    [Google Scholar]
  34. SinghS., SniederR., BehuraJ., van der NeutJ., WapenaarK. and SlobE.2015. Marchenko imaging: Imaging with primaries, internal multiples, and free‐surface multiples. Geophysics80, S165–S174.
    [Google Scholar]
  35. SlobE.2016. Green's function retrieval and Marchenko imaging in a dissipative acoustic medium. Physical Review Letters116, 164301.
    [Google Scholar]
  36. SlobE. and WapenaarK.2017. Theory for Marchenko imaging of marineseismic data with free surface multiple elimination. 79th Conference and Exhibition, EAGE, Extended Abstracts.
  37. SlobE., WapenaarK., BrogginiF. and SniederR.2014. Seismic reflector imaging using internal multiples with Marchenko‐type equations. Geophysics79, S63–S76.
    [Google Scholar]
  38. StaringM., PereiraR., DoumaH., van der NeutJ. and WapenaarK.2017. Adaptive double‐focusing method for source‐receiver Marchenko redatuming on field data. 87th Annual International Meeting, SEG, Expanded Abstracts, 4808–4812.
  39. StaringM., PereiraR., DoumaH., van der NeutJ. and WapenaarK.2018. Source‐receiver Marchenko redatuming on field data using an adaptive double‐focusing method. Geophysics83, 1ND–Z38.
    [Google Scholar]
  40. ThomsonC.J., KitchensideP.W. and FletcherR.P.2016. Theory of reflectivity blurring in seismic depth imaging. Geophysical Journal International205, 837–855.
    [Google Scholar]
  41. ThomsenH.R., BrogginiF., van ManenD.‐J., Ravasi, M. and KritskiA.2017. Robust Marchenko focusing‐calibrating surface reflection with VSP data. 79th Conference and Exhibition, EAGE, Extended Abstracts.
  42. van der NeutJ., ThorbeckeJ., MehtaK., SlobE. and WapenaarK.2011. Controlled‐source interferometric redatuming by crosscorrelation and multidimensional deconvolution in elastic media. Geophysics76, S63–S76.
    [Google Scholar]
  43. van der NeutJ., WapenaarK., ThorbeckeJ. and VasconcelosI.2014. Internal multiple suppression by adaptive Marchenko redatuming. SEG Technical Program Expanded Abstracts2014, 4055–4059.
    [Google Scholar]
  44. van der NeutJ. and WapenaarK.2015. Point‐spread functions for interferometric imaging. Geophysical Prospecting63, 1033–1049.
    [Google Scholar]
  45. van der NeutJ. and WapenaarK.2016. Adaptive overburden elimination with the multidimensional Marchenko equation. Geophysics81, T265–T284.
    [Google Scholar]
  46. van der NeutJ., VasconcelosI. and WapenaarK.2015a. On Green's function retrieval by iterative substitution of the coupled Marchenko equations. Geophysical Journal International203, 792–813.
    [Google Scholar]
  47. van der NeutJ., WapenaarK., ThorbeckeJ. and SlobE.2015b. Practical challenges in adaptive Marchenko imaging. 85th Annual International Meeting, SEG, Expanded Abstracts, 4505–4509.
  48. van der Neut, J., ThorbeckeJ., WapenaarK. and SlobE.2015c. Inversion of the multidimensional Marchenko equation. 77th Annual International Conference and Exhibition, EAGE, Extended Abstracts.
  49. van GroenestijnG.J.A. and VerschuurD.J.2009. Estimating primaries by sparse inversion and application to near‐offset data reconstruction. Geophysics74, A23–A28.
    [Google Scholar]
  50. VasconcelosI. and van der NeutJ.2016. Full‐wavefield redatuming of perturbed fields with the Marchenko method, 78th EAGE Conference and Exhibition.
  51. VerschuurD.J., BerkhoutA.J. and WapenaarC.P.A.1992. Adaptive surface‐related multiple elimination. Geophysics57, 1166–1177.
    [Google Scholar]
  52. WapenaarK., van der NeutJ., RuigrokE., DraganovD., HunzikerJ., SlobE., et al. 2011. Seismic interferometry by crosscorrelation and by multi‐dimensional deconvolution: A systematic comparison. Geophysical Journal International185, 1335–1364.
    [Google Scholar]
  53. WapenaarK., ThorbeckeJ., van der NeutJ., BrogginiF., SlobE. and SniederR.2014a. Marchenko imaging. Geophysics79, WA39–WA57.
    [Google Scholar]
  54. WapenaarK., ThorbeckeJ., van der NeutJ., BrogginiF., SlobE. and SniederR.2014b. Green's function retrieval from reflection data, in absence of a receiver at the virtual source position. Journal of the Acoustical Society of America135, 2847–2861.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12822
Loading
/content/journals/10.1111/1365-2478.12822
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Imaging and Seismics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error