1887
Volume 68, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

We investigate the seismoelectric/electroseismic wavefields excited by a point source in an air/seawater/three‐layered porous medium configuration containing a hydrocarbon layer. The results show that if an explosive source for excitation is used, receivers at seafloor can record the coseismic electromagnetic fields accompanying the , , fluid acoustic waves and the interface responses converted from the acoustic waves at seafloor interface and from the seismic waves at the interfaces beneath the seafloor. Employing a vertical electric dipole source shows that, with the exception of the interface responses converted from electromagnetic waves at seafloor, the interface responses converted from transmitted electromagnetic waves at the interfaces beneath the seafloor can also be identified. Given that the strength of the explosive source is within excitation capability of industry air guns, the generated interface responses from the hydrocarbon layer can be detected by current electromagnetic sensors considering the low ambient noise at the seafloor. Our results demonstrate the feasibility of the seismoelectric method applied to marine hydrocarbon exploration. Electroseismic modelling results suggest that it is not practical to employ this method to prospect marine hydrocarbon layer due to the weak interface response signal, unless a much larger current is injected into seafloor.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12948
2020-05-18
2020-08-11
Loading full text...

Full text loading...

References

  1. AkiK. and RichardsP.G.2002. Quantitative Seismology, 2nd edn. University Science Books, California.
  2. BiotM.A.1956. Theory of propagation of elastic waves in a fluid‐saturated porous solid. II. Higher frequency range. The Journal of the acoustical Society of America28, 179–191.
    [Google Scholar]
  3. BouchonM. and AkiK.1977. Discrete wave‐number representation of seismic‐source wave fields. Bulletin of the Seismological Society of America67, 259–277.
    [Google Scholar]
  4. ButlerK.E. and RussellR.D.1993. Subtraction of powerline harmonics from geophysical records. Geophysics58, 898–903.
    [Google Scholar]
  5. ButlerK.E. and RussellR.D.2003. Cancellation of multiple harmonic noise series in geophysical records. Geophysics68, 1083–1090.
    [Google Scholar]
  6. ButlerK., DupuisJ., KepicA. and MilkereitB.2007. Signal to noise improvements in seismoelectrics data acquisition. Ground Borehole Geophysical Methods111, 3753–3755.
    [Google Scholar]
  7. ButlerK.E., KulessaB. and PuginA.J.2018. Multimode seismoelectric phenomena generated using explosive and vibroseis sources. Geophysical Journal International213, 836–850.
    [Google Scholar]
  8. CaldwellJ. and DragosetW.2000. A brief overview of seismic air‐gun arrays. The Leading Edge19, 898–902.
    [Google Scholar]
  9. ChenJ., HoverstenG.M., VascoD., RubinY. and HouZ.2007. A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data. Geophysics72, WA85–WA95.
    [Google Scholar]
  10. ConstableS.2010. Ten years of marine CSEM for hydrocarbon exploration. Geophysics75, 75A67–75A81.
    [Google Scholar]
  11. ConstableS., KannbergP., CallawayK. and MejiaD.R.2012. Mapping shallow geological structure with towed marine CSEM receivers. In SEG Technical Program Expanded Abstracts (pp. 1–5). Society of Exploration Geophysicists.
  12. ConstableS., KowalczykP. and BloomerS.2018. Marine self‐potential and controlled‐source EM measurements using an autonomous underwater vehicle. In SEG Technical Program Expanded Abstracts 2018 (pp. 964–968). Society of Exploration Geophysicists.
    [Google Scholar]
  13. ConstableS. and SrnkaL.J.2007. An introduction to marine controlled‐source electromagnetic methods for hydrocarbon exploration. Geophysics72, WA3–WA12.
    [Google Scholar]
  14. ConstableS. and WeissC.J.2006. Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modeling. Geophysics71, G43–G51.
    [Google Scholar]
  15. CoxC.S.1981. On the electrical conductivity of the oceanic lithosphere. Physics of the Earth and Planetary Interiors25, 196–201.
    [Google Scholar]
  16. DondururD.2018. Acquisition and Processing of Marine Seismic Data. Elsevier.
    [Google Scholar]
  17. DragosetB.2000. Introduction to air guns and air‐gun arrays. The Leading Edge19, 892–897.
    [Google Scholar]
  18. DupuisJ.C. and ButlerK.E.2006. Vertical seismoelectric profiling in a borehole penetrating glaciofluvial sediments. Geophysical Research Letters33, L16301.
    [Google Scholar]
  19. FourieF.D.2003. Application of electroseismic techniques to geohydrological investigations in Karoo Rocks (Doctoral dissertation, University of the Free State).
  20. FourieF.D.2006. Aspects of the lateral and vertical resolution of surface electroseismic data with implications for groundwater exploration in fractured Karoo rocks. South African Journal of Geology109, 571–584.
    [Google Scholar]
  21. GaoY. and HuH.2009. Numerical simulation and analysis of seismoelectromagnetic wave fields excited by a point source in layered porous media. Chinese Journal of Geophysics52, 2093–2104.
    [Google Scholar]
  22. GaoY. and HuH.2010. Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium. Geophysical Journal International181, 873–896.
    [Google Scholar]
  23. GaoY., ChenX., HuH. and ZhangJ.2013a. Early electromagnetic waves from earthquake rupturing: I. Theoretical formulations. Geophysical Journal International192, 1288–1307.
    [Google Scholar]
  24. GaoY., ChenX., HuH. and ZhangJ.2013b. Early electromagnetic waves from earthquake rupturing: II. Validation and numerical experiments. Geophysical Journal International192, 1308–1323.
    [Google Scholar]
  25. GaoY., HarrisJ.M., WenJ., HuangY., TwardzikC., ChenX.et al. 2016. Modelling of the coseismic electromagnetic fields observed during the 2004 Mw 6.0 Parkfield earthquake. Geophysical Research Letters43, 620–627.
    [Google Scholar]
  26. GaoY., WangM., HuH. and ChenX.2017. Seismoelectric responses to an explosive source in a fluid above a fluid‐saturated porous medium. Journal of Geophysical Research: Solid Earth122, 7190–7218.
    [Google Scholar]
  27. GaramboisS. and DietrichM.2002. Full waveform numerical simulation of seismoelectromagnetic wave conversions in fluid‐saturated stratified porous media. Journal of Geophysical Research: Solid Earth107, 2148.
    [Google Scholar]
  28. GilesB.F. and JohnstonR.C.1973. System approach to air‐gun array design. Geophysical Prospecting21, 77–101.
    [Google Scholar]
  29. GloverP.W.J., WalkerE. and JacksonM.D.2012. Streaming‐potential coefficient of reservoir rock: a theoretical model. Geophysics77, D17–D43.
    [Google Scholar]
  30. GrobbeN. and SlobE.C.2016. Seismo‐electromagnetic thin‐bed responses: natural signal enhancements ?Journal of Geophysical Research: Solid Earth121, 2460–2479.
    [Google Scholar]
  31. GuanW. and HuH.2008. Finite‐difference modeling of the electroseismic logging in a fluid‐saturated porous formation. Journal of Computational Physics227, 5633–5648.
    [Google Scholar]
  32. GuanW., HuH. and ZhengX.2013. Theoretical simulation of the multipole seismoelectric logging while drilling. Geophysical Journal International195, 1239–1250.
    [Google Scholar]
  33. HaartsenM.W. and PrideS.R.1997. Electroseismic waves from point sources in layered media. Journal of Geophysical Research: Solid Earth102, 24745–24769.
    [Google Scholar]
  34. HaartsenM.W., ZhuZ. and ToksözM.N.1995. Electroseismic method for mapping the oil‐water interfaces: Presented at the Dharam, Saudi Arabia. Society of Petroleum Engineers.
  35. HoltenT., FlekkøyE.G., SingerB., BlixtE.M., HanssenA. and MåløyK.J.2009. Vertical source, vertical receiver, electromagnetic technique for offshore hydrocarbon exploration. First Break27, 89–93.
    [Google Scholar]
  36. HornbostelS.C. and ThompsonA.H.2007. Waveform design for electroseismic exploration. Geophysics72, Q1–Q10.
    [Google Scholar]
  37. HoverstenG.M., CassassuceF., GasperikovaE., NewmanG.A., ChenJ., RubinY.et al. 2006. Direct reservoir parameter estimation using joint inversion of marine seismic AVA and CSEM data. Geophysics71, C1–C13.
    [Google Scholar]
  38. HuH. and WangK. 1999. Coupled acoustic and electromagnetic waves around a borehole embedded in a porous formation: theory (I). Well Logging Technology23, 427–432.
    [Google Scholar]
  39. HuangQ., HengxinR., ZhangD. and ChenY.J.2015. Medium effect on the characteristics of the coupled seismic and electromagnetic signals. Proceedings of Japan Academy, Series B91, 17–24.
    [Google Scholar]
  40. Jackson, J.D.1998. Classical Electrodynamics. 3rd edn. John Wiley & Sons Inc.
  41. JouniauxL. and ZysermanF.2016. A review on electrokinetically induced seismo‐electrics, electro‐seismics, and seismo‐magnetics for Earth sciences. Solid Earth7, 249–284.
    [Google Scholar]
  42. KepicA.W., MaxwellM. and Russell, R.D.1995. Field trials of a seismoelectric method for detecting massive sulfides. Geophysics60, 365–373.
    [Google Scholar]
  43. KepicA., RussellR.D., MaxwellM. and ButlerK.E.2001. Underground tests of the radio pulsed effect seismoelectric method at the Lynx Mine, Canada. Exploration Geophysics32, 107–112.
    [Google Scholar]
  44. KulessaB., MurrayT. and RippinD.2006. Active seismoelectric exploration of glaciers. Geophysical Research Letters33, L07503.
    [Google Scholar]
  45. MaxwellM., RussellR.D., KepicA.W. and ButlerK.E.1992. Electromagnetic responses from seismically excited targets B: non‐piezoelectric phenomena. Exploration Geophysics23, 201–208.
    [Google Scholar]
  46. McCauleyR.D., FewtrellJ., DuncanA.J., JennerC., JennerM.N., PenroseJ.D.et al. 2000. Marine seismic surveys—a study of environmental implications. The APPEA Journal40, 692–708.
    [Google Scholar]
  47. MonachesiL.B., ZysermanF.I. and JouniauxL.2018a. An analytical solution to assess the SH seismoelectric response of the vadose zone. Geophysical Journal International213, 1999–2019.
    [Google Scholar]
  48. MonachesiL.B., ZysermanF.I. and JouniauxL.2018b. SH seismoelectric response of a glacier: an analytic study. Journal of Geophysical Research: Earth Surface123, 2135–2156.
    [Google Scholar]
  49. NeishtadtN.M., EppelbaumL.V. and LevitskiA.G.2006. Application of piezoelectric and seismoelectrokinetic phenomena in exploration geophysics: Review of Russian and Israeli experiences. Geophysics71, B41–B53.
    [Google Scholar]
  50. PinderD.2001. Offshore oil and gas: global resource knowledge and technological change. Ocean & Coastal Management44, 579–600.
    [Google Scholar]
  51. PrideS.R., 1994. Governing equations for the coupled electromagnetics and acoustics of porous media. Physical Review B50, 15678–15696.
    [Google Scholar]
  52. PrideS.R. and HaartsenM.R.1996. Electroseismic wave properties. The Journal of Acoustical Society of America100, 1301–1315.
    [Google Scholar]
  53. RenH., HuangQ. and ChenX.2016. Existence of evanescent electromagnetic waves resulting from seismoelectric conversion at a solid–porous interface. Geophysical Journal International204, 147–166.
    [Google Scholar]
  54. RevilA. and JardaniA.2010. Seismoelectric response of heavy oil reservoirs: theory and numerical modelling. Geophysical Journal International180, 781–797.
    [Google Scholar]
  55. RosidM.S.2007. Groundwater investigation using the seismoelectric method (Doctoral dissertation, Curtin University).
  56. RussellR.D., ButlerK.E., KepicA.W. and MaxwellM.1997. Seismoelectric exploration. The Leading Edge17, 1611–1615.
    [Google Scholar]
  57. SiegertM.J., KulessaB., BougamontM., ChristoffersenP., KeyK., AndersenK.R.et al. 2018. Antarctic subglacial groundwater: a concept paper on its measurement and potential influence on ice flow. Geological Society, London, Special Publications461, 197–213.
    [Google Scholar]
  58. SlobE. and MulderM.2016. Seismoelectromagnetic homogeneous space Green's functions. Geophysics81, F27–F40.
    [Google Scholar]
  59. SmeuldersD.M.J., GrobbeN., HellerH.K.J. and SchakelM.D.2014. Seismoelectric conversion for the detection of porous medium interfaces between wetting and nonwetting fluids. Vadose Zone Journal13, 1–7.
    [Google Scholar]
  60. SunW.J., FuL.Y., GuanX.Z. and WeiW.2013. A study on anisotropy of shale using seismic forward modeling in shale gas exploration. Chinese Journal of Geophysics (in Chinese)56, 961–970.
    [Google Scholar]
  61. Tenghamn S RL.BorresenCN. 2009. Marine passive seismic method for direct hydrocarbon detection: U.S. Patent Application 12/151,314[P].
  62. ThompsonA.H.2005. Electromagnetic‐to‐seismic conversion: Successful developments suggest viable applications in exploration and production. In SEG Technical Program Expanded Abstracts 2005 (pp. 554–556). Society of Exploration Geophysicists.
  63. ThompsonA.H. and GistG.A.1993. Geophysical applications of electrokinetic conversion. Leading Edge12, 1169–1173.
    [Google Scholar]
  64. ThompsonA.H., HornbostelS., BurnsJ., MurrayT., RaschkeR., WrideJ.et al. 2007. Field tests of electroseismic hydrocarbon detection electroseismic hydrocarbon detection. Geophysics72, N1–N9.
    [Google Scholar]
  65. UmE.S., AlumbaughD.L., HarrisJ.M. and Chen, J.2012. Numerical modeling analysis of short‐offset electric‐field measurements with a vertical electric dipole source in complex offshore environments. Geophysics77, E329–E341.
    [Google Scholar]
  66. VernikL.1998. Acoustic velocity and porosity systematics in siliciclastics. Society of Petrophysicists and Well‐log Analysts39, 27–35.
    [Google Scholar]
  67. WardenS., GaramboisS., SailhacP., JouniauxL. and BanoM.2012. Curvelet‐based seismoelectric data processing. Geophysical Journal International190, 1533–1550.
    [Google Scholar]
  68. WeitemeyerK., GaoG., ConstableS. and AlumbaughD.2010. The practical application of 2D inversion to marine controlled‐source electromagnetic data. Geophysics75, F199–F211.
    [Google Scholar]
  69. WhiteB.S.2005. Asymptotic theory of electroseismic prospecting. SIAM Journal on Applied Mathematics65, 1443–1462.
    [Google Scholar]
  70. WhiteB.S. and ZhouM.2006. Electroseismic Prospecting in layered media. SIAM Journal Applied Mathematics67, 69–98.
    [Google Scholar]
  71. ZhuZ. and ToksözM.N.2003. Crosshole seismoelectric measurements in borehole models with fractures. Geophysics68, 1519–1524.
    [Google Scholar]
  72. ZhuZ., ToksözM.N. and BurnsD.R.2007. Electroseismic and seismoelectric measurements of rock samples in a water tank. Geophysics73, 153.
    [Google Scholar]
  73. ZhuZ., ToksözM.N. and BurnsD.R.2008. Electroseismic and seismoelectric measurements of rock samples in a water tankElectroseismic and seismoelectric measurements. Geophysics73, E153–E164.
    [Google Scholar]
  74. ZiolkowskiA.1970. A method for calculating the output pressure waveform from an air gun. Geophysical Journal International21, 137–161.
    [Google Scholar]
  75. ZiolkowskiA., WrightD. and MattssonJ. 2011. Comparison of pseudo‐random binary sequence and square‐wave transient controlled‐source electromagnetic data over the Peon gas discovery. Geophysical Prospecting59, 1114–1131.
    [Google Scholar]
  76. ZysermanF.I., JouniauxL., WardenS. and GaramboisS.2015. Borehole seismoelectric logging using a shear‐wave source: possible application to CO2 disposal ?International Journal of Greenhouse Gas Control33, 89–102.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12948
Loading
/content/journals/10.1111/1365-2478.12948
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Electromagnetics , Numerical study and Resistivity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error