1887
Volume 56, Issue 6
  • E-ISSN: 1365-2478

Abstract

ABSTRACT

In order to account for the effects of elastic wave propagation in marine seismic data, we develop a waveform inversion algorithm for acoustic‐elastic media based on a frequency‐domain finite‐element modelling technique. In our algorithm we minimize residuals using the conjugate gradient method, which back‐propagates the errors using reverse time migration without directly computing the partial derivative wavefields. Unlike a purely acoustic or purely elastic inversion algorithm, the Green's function matrix for our acoustic‐elastic algorithm is asymmetric. We are nonetheless able to achieve computational efficiency using modern numerical methods. Numerical examples show that our coupled inversion algorithm produces better velocity models than a purely acoustic inversion algorithm in a wide variety of cases, including both single‐ and multi‐component data and low‐cut filtered data. We also show that our algorithm performs at least equally well on real field data gathered in the Korean continental shelf.

Loading

Article metrics loading...

/content/journals/10.1111/j.1365-2478.2008.00735.x
2008-10-06
2020-04-05
Loading full text...

Full text loading...

References

  1. BarbatA. H.1984. Seismic soil‐structure‐fluid interaction analysis. In: Numerical Methods in Coupled Systems (eds R.W.Lewis , P.Bettess and E.Hinton ), pp. 353–386. John Wiley and Sons Inc.
    [Google Scholar]
  2. Brandsberg‐DahlS., UrsinB. and De HoopM.V.2003. Seismic velocity analysis in the scattering‐angle/azimuth domain. Geophysical Prospecting51, 295–314.
    [Google Scholar]
  3. ChoiY., ShinC., MinD.J. and HaT.2005. Efficient calculation of the steepest descent direction for source‐independent seismic waveform inversion: An amplitude approach. Journal of Computational Physics208, 455–468.
    [Google Scholar]
  4. EwingW.M., JardetzkyW.S. and PressF.1957. Elastic Waves in Layered Media . McGraw‐Hill.
    [Google Scholar]
  5. GélisC., VirieuxJ. and GrandjeanG.2007. Two‐dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain. Geophysical Journal International168, 605–633.
    [Google Scholar]
  6. JangU., MinD.‐J. and ShinC.2006. Comparison of regularization techniques for waveform inversion. 68th EAGE meeting, Vienna , Austria , Expanded Abstracts, P313.
  7. KimJ.H. and KimS.J.1999. A multifrontal solver combined with graph partitioners. American Institute of Aeronautics and Astronautics Journal37, 964–970.
    [Google Scholar]
  8. KolbP., CollinoF. and LaillyP.1986. Pre‐stack inversion of a 1‐D medium. Proceedings of the IEEE74, 498–508.
    [Google Scholar]
  9. KomatitschD., BarnesC. and TrompJ.2000. Wave propagation near a fluid‐solid interface: A spectral‐element approach. Geophysics65, 623–631.
    [Google Scholar]
  10. KreyszigE.1993. Advanced Engineering Mathematics , 7th edn. John Wiley and Sons Inc.
    [Google Scholar]
  11. LaillyP.1983. The seismic inverse problem as a sequence of before stack migrations. In: Conference on Inverse Scattering: Theory and Application (eds J.B.Bednar , R.Redner , E.Robinson and A.Weglein ). SIAM, Philadelphia .
  12. LeeK.H. and KimH.J.2003. Source‐independent full‐waveform inversion of seismic data. Geophysics68, 2010–2015.
    [Google Scholar]
  13. LinesL.R. and TreitelS.1984. A review of least‐squares inversion and its application to geophysical problems. Geophysical Prospecting32, 159–186.
    [Google Scholar]
  14. MarfurtK.J.1984. Accuracy of finite‐difference and finite‐element modeling of the scalar and elastic wave equation. Geophysics49, 533–549.
    [Google Scholar]
  15. MartinG.S., MarfurtK.J. and LarsenS.2002. Marmousi‐2: An updated model for the investigation of AVO in structurally complex areas. 72nd SEG meeting, Salt lake City , Utah , USA , Expanded Abstract, pp. 1979–1982.
  16. MoraP.1987. Nonlinear two‐dimensional elastic inversion of multioffset seismic data. Geophysics52, 1211–1228.
    [Google Scholar]
  17. MoraP.1988. Elastic wavefield inversion of reflection and transmission data. Geophysics53, 750–759.
    [Google Scholar]
  18. OfficerC.B.1958. Introduction to the Theory of Sound Transmission with Application to the Ocean . McGraw‐Hill.
    [Google Scholar]
  19. OpertoS., RavautC., ImprotaL., VirieuxJ., HerreroA. and Dell'AversanaP.2004. Quantitative imaging of complex structures from dense wide‐aperture seismic data by multiscale traveltime and waveform inversions: A case study. Geophysical Prospecting52, 625–651.
    [Google Scholar]
  20. PrattR.G., ShinC. and HicksG.J.1998. Gauss‐Newton and full Newton methods in frequency‐space seismic waveform inversion. Geophysical Journal International133, 341–362.
    [Google Scholar]
  21. RavautC., OpertoS., ImprotaL., VirieuxJ., HerreroA. and Dell'AversanaP.2004. Multiscale imaging of complex structures form multifold wide‐aperture seismic data by frequency‐domain full‐waveform tomography: Application to a thrust belt. Geophysical Journal International159, 1032–1056.
    [Google Scholar]
  22. SheenD‐.H., TuncayK., BaagC‐.E. and OrtolevaP.2006. Time domain Gauss‐Newton seismic waveform inversion in elastic media. Geophysical Journal International167, 1373–1384.
    [Google Scholar]
  23. ShinC.1988. Nonlinear elastic wave inversion by blocky parametrization. PhD thesis, University of Tulsa .
  24. ShinC., JangS.H. and MinD.J.2001. Improved amplitude preservation for prestack depth migration by inverse scattering theory. Geophysical Prospecting49, 592–606.
    [Google Scholar]
  25. ShinC. and MinD.J., 2006. Waveform inversion using a logarithmic wavefield. Geophysics71, R31–R42.
    [Google Scholar]
  26. ShinC., PyunS. and BednarJ.B.2007. Comparison of waveform inversion, part 1: Conventional wavefield vs. logarithmic wavefield. Geophysical Prospecting55, 449–464.
    [Google Scholar]
  27. SymonsN.P., AldridgeD.F. and HaneyM.M.2006. 3D acoustic and elastic modeling with marmousi2. 76th SEG meeting, New Orleans , Louisiana , USA , Expanded Abstract, pp. 2171–2175.
  28. TarantolaA.1984. Inversion of seismic reflection data in the acoustic approximation. Geophysics49, 1259–1266.
    [Google Scholar]
  29. TarantolaA.1987. Inverse Problem Theory: Methods for Data Fitting and Parameter Estimation . Elsevier.
    [Google Scholar]
  30. VirieuxJ.1986. P‐SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method. Geophysics51, 889–901.
    [Google Scholar]
  31. XuK., GreenhalghS.A. and WangM.Y.2006. Comparison of source‐independent methods of elastic waveform inversion. Geophysics71, R91–R100.
    [Google Scholar]
  32. ZhouB. and GreenhalghS.A.2003. Crosshole seismic inversion with normalized full‐waveform amplitude data. Geophysics68, 1320–1330.
    [Google Scholar]
  33. ZienkiewiczO.C. and TaylorR.L.2000. The Finite Element Method. Volume 1: The Basis . Butterworth‐Heinemann.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/j.1365-2478.2008.00735.x
Loading
/content/journals/10.1111/j.1365-2478.2008.00735.x
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error