1887
Volume 4 Number 2
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

A study of four airborne electromagnetic data sets collected during the past decade by the BGR helicopter‐borne geophysical system over various geological settings shows that such data sets indicate not only layered horizontal geological features but also vertically and laterally confined structures, such as buried valleys. Indicative geological markers comprise conductive cover layers, conductive fills in resistive bedrock, and incisions in a conductive host filled with resistive materials. In cases where the valleys are incised into a magnetic basement and refilled with non‐magnetic material, the magnetic data records can also be used for identification and thickness estimates of the infill.

From a hydrogeological point of view, buried valleys are becoming increasingly important as they host groundwater reserves, which are in many cases big enough to satisfy the future demand for fresh water. This paper describes two examples from the North‐West German lowlands and another two from the Namib coastal plains, where the Kuiseb and the Omaruru ephemeral rivers reach the shore of the South Atlantic Ocean.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2005038
2005-06-01
2024-04-26
Loading full text...

Full text loading...

References

  1. BhattacharyyaB.K.1965. Two-dimensional harmonic analysis as a tool for magnetic interpretation.Geophysics30, 829–857.
    [Google Scholar]
  2. EberleD.1995. Geophysical mapping in Archean greenstone belts of Tanzania as an aid for gold prospecting.First Break13, 357–367.
    [Google Scholar]
  3. FlucheB. and SengpielK.-P.1997. Grundlagen und Anwendungen der Hubschraubergeophysik. In: Umweltgeophysik (ed. M.Beblo ), pp. 363–393. Ernst & Sohn.
    [Google Scholar]
  4. FraserD.C.1978. Resistivity mapping with an airborne multicoil electromagnetic system.Geophysics43, 144–172.
    [Google Scholar]
  5. GabrielG., KirschR., SiemonB. and WiederholdH.2003. Geophysical investigation of Pleistocene valleys in Northern Germany.Journal of Applied Geophysics53, 159–180.
    [Google Scholar]
  6. HahnA.1965. Two applications of Fourier's analysis for the interpretation of geomagnetic anomalies.Journal of Geomagnetism and Geoelectricity17, 195–225.
    [Google Scholar]
  7. HahnA., KindE.G. and MishraD.C.1976. Depth estimation of magnetic sources by means of Fourier amplitude spectra.Geophysical Prospecting24, 287–308.
    [Google Scholar]
  8. JordanH. and SiemonB.2002. Die Tektonik des nordwestlichen Harzrandes - Ergebnisse der Hubschrauber-Elektromagnetik.Zeitschrift der Deutschen Geologischen Gesellschaft153, 31–50.
    [Google Scholar]
  9. KeilM., SengpielK.-P. and MollatH.1985. Test of modern methods of helicopter geophysics for prospecting for Pb‐Zn ores in Ireland.Transactions of the Institution of Mining and Metallurgy, Section B, Applied Earth Sciences94, 14–20.
    [Google Scholar]
  10. KusterH. and MeyerK.-D.1979. Glaziäre Rinnen im mittleren und nordöstlichen Niedersachsen.Eiszeitalter und Gegenwart29, 135–156.
    [Google Scholar]
  11. MausS. and DimriV.P.1995a. Basin depth estimation using scaling properties of potential fields.Journal of the Association of Exploration Geophysicists16, 131–139.
    [Google Scholar]
  12. MausS. and DimriV.P.1995b. Potential field power spectrum inversion for scaling geology.Journal of Geophysical Research100, 12605–12616.
    [Google Scholar]
  13. MausS.1999. Variogram analysis of magnetic and gravity data.Geophysics64, 775–783.
    [Google Scholar]
  14. MausS., SengpielK.-P., RöttgerB., SiemonB. and TordiffW.1999. Mapping paleochannels of the Omaruru River by space domain spectral analysis of aeromagnetic data.Geophysics64, 785–794.
    [Google Scholar]
  15. MundryE.1984. On the interpretation of airborne electromagnetic data for the two‐layer case.Geophysical Prospecting32, 336–346.
    [Google Scholar]
  16. NaiduP.S.1969. Estimation of spectrum and cross‐spectrum of aeromag‐netic field using fast digital Fourier transform (FDFT) techniques. Geophysical Prospecting17, 344–361.
    [Google Scholar]
  17. PaulsenS., BorgG., EberleD., HöhndorfA., RammlmairD. and SengpielK.-P.1991. The Tanzanian‐German Gold Project 1988/90, a case history of an interdisciplinary cooperation project.Geologisches Jahrbuch A127, 57–81.
    [Google Scholar]
  18. SengpielK.-P.1988. Approximate inversion of airborne EM data from a multilayered ground.Geophysical Prospecting36, 446–459.
    [Google Scholar]
  19. SengpielK.-P.1990. Theoretical and practical aspects of groundwater exploration using airborne electromagnetic techniques. In: Developments and Applications of Modern Electromagnetic Surveys (ed. D.V.Fitterman ), pp. 149–154. U.S. Geological Survey Bulletin, No.1925.
    [Google Scholar]
  20. SengpielK.-P.1996. Neue Konzepte bei der Entwicklung einer EM‐Flugsonde der BGR für fünf Frequenzen. In: Protokoll über das Kolloquium Elektromagnetische Tiefensondierung (eds K.Bahr and A.Junge ), Burg Ludwigstein, pp. 101–106. Deutsche Geophysikalische Gesellschaft.
    [Google Scholar]
  21. SengpielK.-P. and FlucheB.1992. Application of airborne electromagnetics to groundwater investigations in Pakistan.Zeitschrift der Deutschen Geologischen Gesellschaft143, 254–261.
    [Google Scholar]
  22. SengpielK.-P. and SiemonB.1997. Hubschrauberelektromagnetik zur Grundwassererkundung in der Namib-Wüste.Zeitschrift für ange‐wandte Geologie43, 130–136.
    [Google Scholar]
  23. SengpielK.-P. and SiemonB.1998. Examples of 1-D inversion of mul‐tifrequency HEM data from 3-D resistivity distributions.Exploration Geophysics29, 133–141.
    [Google Scholar]
  24. SengpielK.-P. and SiemonB.2000. Advanced inversion methods for airborne electromagnetics.Geophysics66, 1983–1992.
    [Google Scholar]
  25. SengpielK.-P., SiemonB., EberleD.G. and GreinwaldS.2001. Recent contributions of BGR to high resolution helicopter geophysics. 63rd EAGE Conference, Amsterdam, The Netherlands, Extended Abstracts, 1A-3.
    [Google Scholar]
  26. SiemonB.2001. Improved and new resistivity‐depth profiles for helicopter electromagnetic data.Journal of Applied Geophysics38, 65–76.
    [Google Scholar]
  27. SiemonB. and BinotF.2002. Aerogeophysikalische Erkundung von Salzwasserintrusionen und Küstenaquiferen im Gebiet Bremerhaven‐Cuxhaven – Verifizierung der AEM-Ergebnisse. In: Protokoll über das Kolloquium Elektromagnetische Tiefensondierung (eds A.Hördt and J.B.Stoll ), Burg Ludwigstein, pp. 319–328. Deutsche Geophysikalische Gesellschaft.
    [Google Scholar]
  28. SiemonB., EberleD.G. and BinotF.2004. Helicopter-borne electromagnetic investigation of coastal aquifers in North‐West Germany.Zeitschrift für Geologische Wissenschaften32, 385–395.
    [Google Scholar]
  29. SiemonB., StuntebeckC., SengpielK.-P., RöttgerB., RehliH.-J. and EberleD.G.2002. Investigation of hazardous waste sites and their environment using the BGR helicopter‐borne geophysical system.Journal of Environmental Engineering Geophysics7, 169–181.
    [Google Scholar]
  30. SpectorA. and GrantF.S.1970. Statistical models for interpreting aero‐magnetic data.Geophysics35, 293–302.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2005038
Loading
/content/journals/10.3997/1873-0604.2005038
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error