1887
Volume 14 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

The direct prestack depth migration methods of nonplanar data provide effective ways to address the complex near‐surface problem. Based on the study of local slant stacks considering the elevation and dip angle information of an irregular surface, an alternative method for multiwave Gaussian beam prestack depth migration of exploration‐scale seismic data with complex near‐surface effects is presented here. We first derive the downward‐continued wavefield for an irregular surface in terms of Gaussian beams, where we directly decompose the seismic records within a Gaussian window into a local plane‐wave component. The PP‐ and PS‐wave Gaussian beam prestack depth migration methods under complex near‐surface conditions are then presented, after the wavefield separation is performed with an affine coordinate‐system transform. Tests with numerical examples demonstrate the accuracy and effectiveness of the method.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016018
2016-02-01
2020-03-29
Loading full text...

Full text loading...

References

  1. Al‐AliM.N. and VerschuurD.J.2006. An integrated method for resolving the seismic complex near‐surface problem. Geophysical Prospecting54, 739–750, doi: 10.1111/gpr.2006.54.issue‐6.
    [Google Scholar]
  2. Al‐SalehS.M., MargraveG.F. and GrayS.H.2009. Direct downward continuation from topography using explicit wavefield extrapolation. Geophysics74, S105–S112, doi: 10.1190/1.3263914.
    [Google Scholar]
  3. AlkhalifahT. and BagainiC.2006. Straight‐rays redatuming: A fast and robust alternative to wave‐equation‐based datuming. Geophysics71, U37–U46, doi: 10.1190/1.2196032.
    [Google Scholar]
  4. BasiI.Z. and McMechanG.A.2007. Topographic corrections to slowness measurements in parsimonious migration of land data. Geophysics72, S77–S80, doi: 10.1190/1.2431328.
    [Google Scholar]
  5. BeasleyC. and LynnW.1992. The zero‐velocity layer: Migration from irregular surfaces. Geophysics57, 1435–1443, doi: 10.1190/1.1443211.
    [Google Scholar]
  6. BerryhillJ.R.1979. Wave‐equation datuming. Geophysics44, 1329–1344, doi: 10.1190/1.1441010.
    [Google Scholar]
  7. BerryhillJ.R.1984. Wave‐equation datuming before stack. Geophysics49, 2064–2066, doi: 10.1190/1.1441620.
    [Google Scholar]
  8. BevcD.1997. Flooding the topography: Wave‐equation datuming of land data with rugged acquisition topography. Geophysics62, 1558–1569, doi: 10.1190/1.1444258.
    [Google Scholar]
  9. GrayS.H.2005. Gaussian beam migration of common‐shot records. Geophysics70, S71–S77, doi: 10.1190/1.1988186.
    [Google Scholar]
  10. GrayS.H. and BleisteinN.2009. True‐amplitude Gaussian‐beam migration. Geophysics74, S11–S23, doi: 10.1190/1.3052116.
    [Google Scholar]
  11. GrayS.H. and MarfurtK.J.1995. Migration from topography: Improving the near‐surface image. Canadian Journal of Exploration Geophysics31, 18–24.
    [Google Scholar]
  12. HaleD.1992a. Migration by the Kirchhoff, slant stack and Gaussian beam methods. Colorado School of Mines Center for Wave Phenomena Report 121.
  13. HaleD.1992b. Computational aspects of Gaussian beam migration. Colorado School of Mines Center for Wave Phenomena Report 139.
  14. HanJ.G., WangY., HanN., XingZ.T. and LuJ.2014. Multiwave velocity analysis based on Gaussian beam prestack depth migration. Applied Geophysics11, 186–196, doi: 10.1007/s11770‐014‐0431‐7.
    [Google Scholar]
  15. HanJ.G., WangY. and LuJ.2013. Multi‐component Gaussian beam prestack depth migration. Journal of Geophysics and Engineering10, 055008, doi: 10.1088/1742‐2132/10/5/055008.
    [Google Scholar]
  16. HillN.R.1990. Gaussian beam migration. Geophysics55, 1416–1428, doi: 10.1190/1.1442788.
    [Google Scholar]
  17. HillN.R.2001. Prestack Gaussian‐beam depth migration. Geophysics66, 1240–1250, doi: 10.1190/1.1487071.
    [Google Scholar]
  18. JagerC., HertweckT. and SpinerM.2003. True amplitude Kirchhoff migration from topography. 73rd SEG annual international meeting, Expanded Abstracts, 909–913.
  19. LanH.Q., ZhangZ.J., ChenJ.Y. and LiuY.S.2014. Reverse time migration from irregular surface by flattening surface topography. Tectonophysics627, 26–37.
    [Google Scholar]
  20. LiuW., ZhaoB., ZhouH., HeZ., LiuH. and DuZ.2011. Wave‐ equation global datuming based on the double square root operator. Geophysics76, U35–U43, doi: 10.1190/1.3555076.
    [Google Scholar]
  21. LuJ., WangY. and YaoC.2012. Separating P‐ and S‐waves in an affine coordinate system. Journal of Geophysics and Engineering9, 12–18.
    [Google Scholar]
  22. MarsdenD.1993. Static corrections—a review, Part 1. The Leading Edge12, 43–49, doi: 10.1190/1.1436912.
    [Google Scholar]
  23. McMechanG.A. and ChenH.W.1990. Implicit static corrections in prestack migration of common‐source data. Geophysics55, 757–760, doi: 10.1190/1.14428873.
    [Google Scholar]
  24. NowackR.L., ChenW.P. and TsengT.L.2010. Application of Gaussian‐beam migration to multiscale imaging of the lithosphere beneath the Hi‐CLIMB array in Tibet. Bulletin of the Seismological Society of America100, 1743–1754.
    [Google Scholar]
  25. PopovM.M., SemtchenokN.M., PopovP.M. and VerdelA.R.2010. Depth migration by the Gaussian beam summation method. Geophysics75, S81–S93, doi: 10.1190/1.3361651.
    [Google Scholar]
  26. RajasekaranS. and McMechanG.A.1995. Prestack processing of land data with complex topography. Geophysics60, 1875–1886, doi: 10.1190/1.1443919.
    [Google Scholar]
  27. ReshefM.1991. Depth migration from irregular surfaces with depth extrapolation methods. Geophysics56, 119–122.
    [Google Scholar]
  28. RosalesD. and RickettJ.2001. PS‐wave polarity reversal in angle domain common‐image gathers. Stanford Exploration Project Report 108.
  29. SchneiderW.A., PhillipL.D. and PaalE.F.1995. Wave equation velocity replacement of the low‐velocity layer for overthrust‐belt data. Geophysics60, 573–579.
    [Google Scholar]
  30. ShtivelmanV. and CanningA.1988. Datum correction by wave equation extrapolation. Geophysics53, 1311–1322, doi: 10.1190/1.1442409.
    [Google Scholar]
  31. TanerM.T., KoehlerF. and AlhilaliK.1974. Estimation and correction of near‐surface time anomalies. Geophysics39, 441–463.
    [Google Scholar]
  32. WigginsJ.W.1984. Kirchhoff integral extrapolation and migration of nonplanar data. Geophysics49, 1239–1248.
    [Google Scholar]
  33. YangK., WangH.Z. and MaZ.T.1999. Wave equation datuming from irregular surfaces using finite difference scheme. 69th SEG annual international meeting, Expanded Abstracts, 1842–1846.
  34. YilmazW. and LucasD.1986. Pre‐stack layer replacement. Geophysics51, 1355–1369.
    [Google Scholar]
  35. YueY.B., LiZ.C., ZhangP., ZhouX.F. and QinN.2010. Prestack Gaussian beam depth migration under complex surface conditions. Applied Geophysics7, 143–148, doi: 10.1007/s11770‐010‐0238‐0.
    [Google Scholar]
  36. ZhangJ.F., XuJ.C. and ZhangH.2012. Migration from 3D irregular surfaces. A prestack time migration approach. Geophysics77, S117–S129, doi: 10.1190/GEO2011‐0447.1.
    [Google Scholar]
  37. ZhangZ., LinY. and LiuE.2005. Large static correction using a hybrid optimization method in complex terrains: some experience learnt from China. Journal of Seismic Exploration13, 337–352.
    [Google Scholar]
  38. ZhuX., AngstmanB.G. and SixtaD.P.1998. Overthrust imaging with tomo‐datuming: A case study. Geophysics63, 25–38, doi: 10.1190/1.1444319.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016018
Loading
/content/journals/10.3997/1873-0604.2016018
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error