1887
Volume 16 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

We present the results of a seismic survey on an open‐system pingo, the Innerhytta pingo, located in the Adventdalen Valley, Spitsbergen Island of the Svalbard Archipelago, Norway. To evaluate the temporal evolution of the permafrost, we need detailed knowledge of its heterogeneities, of which pingos are the most visible markers. The seismic velocity contrasts and inversions peculiar to these features can be a problem for a successful seismic survey. The present paper focusses on the limits and benefits of various seismic methods for imaging the subsurface structure of the pingo, with the aim of defining the best practice for shallow seismic exploration. We performed several tests, using classical reflection/refraction arrays, seismic tomography, and surface wave analysis. We tested different kinds of seismic sources and receivers. The combined use of several sources and receivers sets and patterns, and the use of surface wave analysis and body wave tomography allowed constructing a three‐dimensional model of the velocities. For this particular pingo, beneath an approximately 15‐m thick high‐velocity layer, low velocities are found to be present at an anomalously shallow depth. This low‐velocity layer is interpreted to host the ground water circulation that controls the pingo’s structural evolution. Such observations suggest feeding water flow from depth rather than from the near surface, as commonly supposed for open‐system pingos.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2017037
2017-07-01
2020-07-14
Loading full text...

Full text loading...

References

  1. BenseV.F., KooiH., FergusonG. and ReadT.2012. Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. Journal of Geophysical Research‐Earth Surface117, F03036.
    [Google Scholar]
  2. BoagaJ., VignoliG. and CassianiG.2011. Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis. Journal of Geophysical Engineering8, 162–174.
    [Google Scholar]
  3. BöhmG. and VesnaverA.1996. Relying on a grid. Journal of Seismic Exploration5, 169–184.
    [Google Scholar]
  4. BöhmG., RossiG. and VesnaverA.1999. Minimum time ray‐tracing for 3‐D irregular grids. Journal of Seismic Exploration8, 117–131.
    [Google Scholar]
  5. ChristiansenH.H., EtzelmüllerB., IsaksenK., JuliussenH., FarbrotH., HumlumO.et al. 2010. The thermal state of permafrost in the Nordic area during IPY 2007–2009. Permafrost and Periglacial Processes21, 156–181.
    [Google Scholar]
  6. DallmannW.K., MajorH., HaremoP., AndresenA., KjœrnetT. and NøttvedtA.2001. Geological map of Svalbard 1:100,000, sheet C9G Adventdalen. With explanatory text. Norsk Polarinstitutt Temakart31/32, 4–55.
    [Google Scholar]
  7. EikenO. and AustegardA.1989. The Tertiary orogenic belt of West Spitsbergen: seismic expressions of the offshore sedimentary basins. A reply. Norsk Geologisk Tidsskrift4, 137–139. Oslo 1989.
    [Google Scholar]
  8. EikenO., DegutschM., RisteP. and RødK.1989. Snowstreamer: an efficient tool in seismic acquisition. First Break7, 374–378.
    [Google Scholar]
  9. FjellangerJ.P., DyneciusL., RisteP. and RødK.1995. Two experiments trying to find the coupling response for half‐gimballed geophones on snow, 57th EAGE Conference and Exhibition,D044, Glasgow, May 29–June 2, 1995.
    [Google Scholar]
  10. HauckC.2013. New concepts in geophysical surveying and data interpretation for permafrost terrain. Permafrost and Periglacial Processes24, 131–137.
    [Google Scholar]
  11. HauckC. and KneiselC.2008. Applied Geophysics in Periglacial Environments,Cambridge University Press, 240 pp.
    [Google Scholar]
  12. HumlumO., InstanesA. and SollidJ.L.2003. Permafrost in Svalbard: a review of research history, climatic background and engineering challenges. Norsk Polarinstitutt, Polar Research2, 191–215.
    [Google Scholar]
  13. HunkinsK., HerronT., KutschaleH. and PeterG.1962. Geophysical studies of the Chukchi Cap, Arctic Ocean. Journal of Geophysical Research67(1), 235–247.
    [Google Scholar]
  14. HunterJ.A.1973. The application of shallow seismic methods to mapping of frozen surficial materials in permafrost. Proceedings of the 2nd International Permafrost Conference, Yakutsk.North American Contribution. National Academy of Sciences, National Research Council, 527–534.
    [Google Scholar]
  15. JohansenT.A., DigranesP., van SchaackM. and LonneI.2003. Seismic mapping and modeling of near‐surface sediments in polar areas. Geophysics68, 566–573.
    [Google Scholar]
  16. JohansenT.A., RuudB.E., BakkeN.E., RisteP., JohannessenE.P. and HenningsenT.2011. Seismic profiling on Arctic glaciers. First Break29, 65–71.
    [Google Scholar]
  17. JuliussenH., ChristiansenH.H., StrandG.S., IversenS., MidttømmeK. and RønningJ.S.2010. NORPERM, the Norwegian Permafrost Database—A TSP NORWAY IPY legacy. Earth System Science Data Discussions3, 27–54.
    [Google Scholar]
  18. KingM.S., ZimmermanR.W. and CorwinR.F.1988. Seismic and electrical properties of unconsolidated permafrost. Geophysical Prospecting36, 349–364.
    [Google Scholar]
  19. KleinbergK.L and GriffinD.D.2005. NMR measurements of permafrost: unfrozen water assay, pore‐scale distribution of ice, and hydraulic permeability of sediments. Cold Regions Science and Technology42, 63–77.
    [Google Scholar]
  20. KneiselC., SæmundssonÞ. and BeylichA.A.2007. Reconnaissance surveys of contemporary permafrost environments in central Iceland using geoelectrical methods: implications for permafrost degradation and sediment fluxes. Geografiska Annaler89 A (1), 41–50.
    [Google Scholar]
  21. KovacsA. and MoreyR.M.1986. Electromagnetic measurement of multi‐year sea ice using impulse radar. Cold Regions Science and Technology12, 67–93.
    [Google Scholar]
  22. LambH.1917. On waves in an elastic plate. Proceedings of the Royal Society London,Ser. A 93, pp. 114–128.
    [Google Scholar]
  23. LecomteI., PolomU., SauvinG., RuudB. O., ChristiansenH. and GilbertG.L.2014. Shearwave reflection‐seismic pilot study at the UNIS CO2 Lab site, Longyearbyen, Svalbard, Extended Abstract, 76th EAGE Conference & Exhibition,Amsterdam, P04 05.
    [Google Scholar]
  24. LiestølO.1977. Pingos, springs, and permafrost in Spitsbergen. Norsk Polarinstitutt Årbok 1975, pp. 7–29.
    [Google Scholar]
  25. LoweM.J.S.1995. Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control42, 525–542.
    [Google Scholar]
  26. MacDougallA.H., AvisC. and WeaverA.J.2012. Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience5, 719–721.
    [Google Scholar]
  27. MackayJ.R.1998. Pingo Growth and collapse, Tuktoyaktuk Peninsula Area, Western Arctic Coast, Canada: a long‐term field study. Géographie physique et Quaternaire52, 271–323.
    [Google Scholar]
  28. MajorH. and NagyJ.1972. Geology of the Adventdalen map area. (with map, published in 1964)Norsk Polarinstitutt Skrifter138, 1–58.
    [Google Scholar]
  29. MinsleyB.J., AbrahamJ.D., SmithB.D., CanniaJ.C. and VossC.I.2012. Airborne electromagnetic imaging of discontinuous permafrost. Geophysical Research Letters39, L02503.
    [Google Scholar]
  30. Norwegian Polar Institute
    Norwegian Polar Institute2014. Terrengmodell Svalbard (S0 Terrengmodell). Tromsø, Norway: Norwegian Polar Institute. https://data.npolar.no/dataset/dce53a47-c726-4845-85c3-a65b46fe2fea.
    [Google Scholar]
  31. OyeV., BraathenA. and PolomU.2013. Preparing for CO2 storage at the Longyearbyen CO2 Lab: microseismic monitoring of injection tests. First Break31, 95–102.
    [Google Scholar]
  32. ParkC.B., RydenN., WesterhoffR. and MillerR.D.2002. Lamb waves observed during MASW surveys, SEG Technical Program Expanded Abstracts 2002, 1400–1403.
    [Google Scholar]
  33. PetronioL., BoagaJ. and CassianiG.2016. Characterization of the Vajont landslide (North‐Eastern Italy) by means of reflection and surface wave seismics. Journal of Applied Geophysics128, 58–67.
    [Google Scholar]
  34. PetronioL., RossiG., AccainoF., RomeoR., WheelerW. and BoagaJ.2015. Seismic data acquisition on Innerhytta Pingo ‐ Svalbard Islands. 77th EAGE Conference and Exhibition 2015,Madrid, Spain, June 2015.
    [Google Scholar]
  35. PiperD.J.W. and PorrittC.J.1966. Some pingos in Spitsbergen. Norsk Polarinstitutt Årbok,Oslo, 1965, pp. 81–84.
    [Google Scholar]
  36. RossN., BrabhamP.J., HarrisC. and ChristiansenH.H.2007. Internal structure of open system Pingos, Adventdalen, Svalbard: the use of resistivity tomography to assess ground‐ice conditions. Journal of Environmental and Engineering Geoscience12, 113–126.
    [Google Scholar]
  37. RossN., HarrisC., ChristiansenH.H and BrabhamP.2005. Ground penetrating radar investigations of open system pingos, Adventdalen, Svalbard. Norsk Geografisk Tidsskrift. Norwegian Journal of Geography59, 129–138.
    [Google Scholar]
  38. RossiG., GeiD., BöhmG., MadrussaniG. and CarcioneJ.M.2007. Attenuation tomography: an application to gas‐hydrate and free‐gas detection. Geophysical Prospecting55, 655–669.
    [Google Scholar]
  39. RossiG., CoruboloP., BöhmG., CeraggioliE., Dell’AversanaP., MorandiS.et al. 2001. Joint 3‐D inversion of SWD and surface seismic data. First Break19, 453–459.
    [Google Scholar]
  40. RossiG., AccainoF., BoagaJ., PetronioL., RomeoR. and WheelerW.2015. Seismic analysis of a Pingo, Svalbard Islands, Arctic. Near Surface Geoscience 2015. 21st European Meeting of Environmental and Engineering Geophysics,Turin September 2015.
    [Google Scholar]
  41. RydenN., ParkC.B., UlriksenP. and MillerR.D.2004. Multimodal approach to seismic pavement testing. Journal of Geotechnical and Geoenvironmental Engineering130, 636–645.
    [Google Scholar]
  42. SchuhC., FramptonA. and ChristiansenH.H.2017. Soil moisture redistribution and its effect on inter‐annual active layer temperature and thickness variations in a dry loess terrace in Adventdalen, Svalbard. The Cryosphere11, 635–651.
    [Google Scholar]
  43. ScottW., SellmannP. and HunterJ.1990. Geophysics in the study of permafrost. In: Geotechnical and Environmental Geophysics (ed S.Ward ), pp. 355–384. Society of Exploration Geophysicists.
    [Google Scholar]
  44. SellevollM.A., DudaS.J., GuterchA., PajchelJ, PerchucE. and ThyssenF.1991. Crustal structure in the Svalbard region from seismic measurements. Tectonophysics189, 55–71.
    [Google Scholar]
  45. SoccoL.V. and StrobbiaL.C.2004. Surface wave methods for near‐surface characterization: a tutorial. Near Surface Geophysics2, 165–185.
    [Google Scholar]
  46. StrobbiaC., GlushchenkoA., LaakeA, VermeerP., PapworthS. and JiY.2009. Arctic near surface challenges: the point receiver solution to coherent noise and statics. First Break27, 69–76.
    [Google Scholar]
  47. SundvorE., SellevollM., GidskehaugA. and EldholmO.1978. Seismic investigation on the Western and Northern Margin off Svalbard. Polarforschung48(112), 41–43.
    [Google Scholar]
  48. TsujiT., JohansenT.A., RuudB.O., IkedaT. and MatsuokaT.2012. Surface‐wave analysis for identifying unfrozen zones in subglacial sediments. Geophysics77, EN17–EN27.
    [Google Scholar]
  49. TsujiT., IkedaT., JohansenT.A. and RuudB.O.2016. Using seismic noise derived from fluid injection well for continuous reservoir monitoring. Interpretation4(4), SQ1–SQ11.
    [Google Scholar]
  50. van der SluisA. and van der VorstH.A.1987. Numerical solution of large sparse linear algebraic systems arising from tomographic problems. In: Seismic Tomography (ed G.Nolet ), pp. 49–83. Reidel Publishing Co., Dordrecht.
    [Google Scholar]
  51. VesnaverA., BöhmG., MadrussaniG., PetersenS. and RossiG.1999. Tomographic imaging by reflected and refracted arrivals at the North Sea. Geophysics64, 1852–1862.
    [Google Scholar]
  52. VesnaverA., BöhmG., MadrussaniG., RossiG. and GranserH.2000. Depth imaging and velocity calibration by 3D adaptive tomography. First Break18, 303–312.
    [Google Scholar]
  53. VogtC, LaihemK and WiebuschC.2008. Speed of sound in bubble‐free ice. Journal of the Acoustic Society of America124(6), 3613–8.
    [Google Scholar]
  54. WoolsonJ.R.1962. Seismic and gravity surveys of Naval Petroleum Reserve No. 4 and adjoining areas, northern Alaska, part 4: geophysics. U.S. Geological Survey Professional Paper304‐A, 25 pp.
    [Google Scholar]
  55. YoshikawaK.1993. Notes on open‐system pingo ice, Adventdalen, Spitsbergen. Permafrost and Periglacial Processes4, 327–334.
    [Google Scholar]
  56. YoshikawaK., LeuschenC., IkedaA., HaradaK., GogineniP., HoekstraP.et al. 2006. Comparison of geophysical investigations for detection of massive ground ice (Pingo ice). Journal of Geophysical Research111, E06S19.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2017037
Loading
/content/journals/10.3997/1873-0604.2017037
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error