1887
Volume 16, Issue 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

We apply the magnetic resonance sounding (MRS) method to investigate a firn aquifer in the south‐east region of the Greenland ice sheet. Our study aims to delineate and estimate the volume of the recently discovered water stored within the firn (compacted snow) that remains liquid throughout the year. We develop and test successfully a methodology for joint use of MRS and ground‐penetrating radar (GPR). This non‐invasive geophysical approach is particularly well‐adapted to glacier conditions and has a promising future for investigation of water distribution in glaciers. At our field site, MRS showed an aquifer located at variable depths between 20 and 30 m beneath the ice‐sheet surface. At the monitoring site, both MRS and GPR show an increase in the water volume stored between April 2015 and July 2016. MRS estimates suggest that the volume increased by approximately 28%.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12001
2018-07-27
2019-12-09
Loading full text...

Full text loading...

References

  1. ArconeS., LawsonD. and DelaneyA.1995. Short‐pulse radar wavelet recovery and resolution of dielectric contrasts within englacial and basal ice of Matanuska Glacier, Alaska, U.S.A. Journal of Glaciology41, 68–86.
    [Google Scholar]
  2. BehroozmandA.A., KeatingK. and AukenE.2015. A review of the principles and applications of the NMR technique for near‐surface characterization. Surveys in Geophysics36, 27–85.
    [Google Scholar]
  3. BjörnssonH., GjessingY., HamranS., HagenJ., LiestølO., PálssonF. and ErlingssonB.1996. The thermal regime of sub‐polar glaciers mapped by multi‐frequency radio‐echo sounding. Journal of Glaciology42, 23–32.
    [Google Scholar]
  4. BoucherM., GirardJ.F., LegchenkoA., BaltassatJ.M., DörfligerN. and ChalikakisK.2006. Using magnetic resonance soundings to locate a water‐filled karst conduit, Journal of Hydrology330, 413–421, https://doi.org/10.1016/j.jhydrol.2006.03.034.
    [Google Scholar]
  5. BradfordJ. and HarperJ.2005. Wave field migration as a tool for estimating spatially continuous radar velocity and water content in glaciers. Geophysical Research Letters32, https://doi.org/10.1029/2004GL021770.
    [Google Scholar]
  6. BraunM. and YaramanciU.2008. Inversion of resistivity in magnetic resonance sounding. Journal of Applied Geophysics66, 151–164
    [Google Scholar]
  7. BrownJ.R., BroxT.I., VogtS.J., SeymourJ.D., SkidmoreM.L. and CoddS.L.2012. Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products. Journal of Magnetic Resonance225, 17–24.
    [Google Scholar]
  8. BrownJ., BradfordJ., HarperJ., PfefferW.T., HumphreyN. and Mosley‐ThompsonE.2012b. Georadar‐derived estimates of firn density in the percolation zone, western Greenland ice sheet: Georadar‐derived firn density profiles. Journal of Geophysical Research: Earth Surface117, https://doi.org/10.1029/2011JF002089.
    [Google Scholar]
  9. BroxT.I., SkidmoreM.L. and BrownJ.R.2015. Characterizing the internal structure of laboratory ice samples with nuclear magnetic resonance. Journal of Glaciology61, 55–64, https://doi.org/10.3189/2015JoG14J133.
    [Google Scholar]
  10. CallaghanP.T., DykstraR., EcclesC.D., HaskellT.G. and SeymourJ.D.1999. A nuclear magnetic resonance study of Antarctic sea ice brine diffusivity. Cold Regions Science and Technology29, 153–171, https://doi.org/10.1016/S0165-232X(99)00024-5.
    [Google Scholar]
  11. ChevalierA., LegchenkoA., GirardJ.F. and DescloitresM.2014. 3D Monte Carlo inversion of magnetic resonance measurements. Geophysical Journal International198, 216–228, https://doi.org/10.1093/gji/ggu091.
    [Google Scholar]
  12. ChristiansonK., KohlerJ., AlleyR.B., NuthC. and van PeltW.J.J.2015. Dynamic perennial firn aquifer on an Arctic glacier. Geophysical Research Letters42, https://doi.org/10.1002/2014GL062806.
    [Google Scholar]
  13. EndresA.L., MurrayT., BoothA.D. and WestL.J.2009. A new framework for estimating englacial water content and pore geometry using combined radar and seismic wave velocities. Geophysical Research Lettters36, https://doi.org/10.1029/2008GL036876.
    [Google Scholar]
  14. FettweisX., FrancoB., TedescoM., van AngelenJ.H., LenaertsJ.T.M., van den BroekeM.R. and GalléeH.2013. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. The Cryosphere7, 469–489, https://doi.org/10.5194/tc-7-469-2013.
    [Google Scholar]
  15. ForsterR.R., BoxJ.E., Van den BroekeM.R., MiègeC., BurgessE.W., Van AngelenJ.H., LenaertsJ.T.M., KoenigL.S., PadenJ., LewisC., GogineniS.P., LeuschenC. and McConnellJ.R.2014. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geoscience7, 95–98, https://doi.org/10.1038/ngeo2043.
    [Google Scholar]
  16. FountainA.G.1988. The storage of water in, and hydraulic characteristics of, the firn of South Cascade Glacier, Washington State, U.S.A. Annals of Glaciology13, 69–75.
    [Google Scholar]
  17. FountainA.G. and WalderJ.S.1998. Water flow through temperate glaciers. Reviews of Geophysics36, 299–328, https://doi.org/10.1029/97RG03579.
    [Google Scholar]
  18. GaramboisS., LegchenkoA., VincentC. and ThibertE.2016. Ground‐penetrating radar and surface nuclear magnetic resonance monitoring of an englacial water‐filled cavity in the polythermal glacier of Tête Rousse. Geophysics81, WA131–WA146, https://doi.org/10.1190/GEO2015-0125.1.
    [Google Scholar]
  19. GrombacherD., FiandacaG., BehroozmandA.A. and AukenE.2017. Comparison of stabiliser functions for surface NMR inversions. Near Surface Geophysics15, 533–544, https://doi.org/10.3997/1873-0604.2017027.
    [Google Scholar]
  20. GuillenA. and LegchenkoA.2002a. Inversion of surface nuclear magnetic resonance data by an adapted Monte Carlo method applied to water resource characterization. Journal of Applied Geophysics50, 193–205.
    [Google Scholar]
  21. GuillenA. and LegchenkoA.2002b. Application of linear programming techniques to the inversion of proton magnetic resonance measurements for water prospecting from the surface. Journal of Applied Geophysics50, 149–162.
    [Google Scholar]
  22. GusmeroliA., MurrayT., JanssonP., PetterssonR., AschwandenA. and BoothA.2010. Vertical distribution of water within the polythermal Storglaciären, Sweden. Journal of Geophysical Research115, https://doi.org/10.1029/2009FJ001539.
    [Google Scholar]
  23. HelmV., HumbertA. and MillerH.2014. Elevation and elevation change of Greenland and Antarctica derived from CryoSat‐2. The Cryosphere8, 1539–1559.
    [Google Scholar]
  24. HertrichM.2008. Imaging of groundwater with nuclear magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy53, 227–248.
    [Google Scholar]
  25. HertrichM., BraunM., GuntherT., GreenA.G. and YaramanciU.2007. Surface nuclear magnetic resonance tomography. IEEE Transactions on Geoscience and Remote Sensing45, 3752–3759, https://doi.org/10.1109/TGRS.2007.903829.
    [Google Scholar]
  26. HertrichM., GreenA.G., BraunM. and YaramanciU.2009. High‐resolution surface NMR tomography of shallow aquifers based on multioffset measurements. Geophysics74, G47–G59.
    [Google Scholar]
  27. HoekstraP.1978. Electromagnetic methods for mapping shallow permafrost. Geophysics43, 782–787.
    [Google Scholar]
  28. Irvine‐FynnT.D.L., HodsonA., MoormanB., VatneG. and HubbardA.2011. Polythermal glacier hydrology. A review: Reviews of Geophysics49, https://doi.org/10.1029/2010RG000350.
    [Google Scholar]
  29. Irvine‐FynnT.D.L., MoormanB.J., WilliamsJ.L.M. and WalterF.S.A.2006. Seasonal changes in ground‐penetrating radar signature observed at a polythermal glacier, Bylot Island, Canada. Earth Surface Processes and Landforms31, 892–909.
    [Google Scholar]
  30. JiangC., Müller‐PetkeM., LinJ. and YaramanciU.2015. Imaging shallow three dimensional water‐bearing structures using magnetic resonance tomography. Journal of Applied Geophysics116, 17–27.
    [Google Scholar]
  31. KneiselC.2004. New insights into mountain permafrost occurrence and characteristics in glacier forefields at high altitude through the application of 2‐D resistivity imaging. Permafrost and Periglacial Processes15, 221–227.
    [Google Scholar]
  32. KoenigL.S., MiegeC., ForsterR.R. and BruckerL.2014. Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophysical Research Letters41, 81–85.
    [Google Scholar]
  33. KovacsA., GowA.J. and MoreyR.M.1995. The in‐situ dielectric constant of polar firn revisited. Cold Regions Science and Technology23, 245–256.
    [Google Scholar]
  34. LangenP.L., FaustoR.S., VandecruxB., MottramR.H. and BoxJ.E.2017. Liquid water flow and retention on the Greenland ice sheet in the regional climate model HIRHAM5: local and large‐scale impacts. Frontiers in Earth Science4, https://doi.org/10.3389/feart.2016.00110.
    [Google Scholar]
  35. LegchenkoA.2013. Magnetic Resonance Imaging for Groundwater. Wiley‐ISTE.
  36. LegchenkoA., BaltassatJ.‐M., BobachevA., MartinC., RobinH. and VouillamozJ.‐M.2004. Magnetic resonance sounding applied to aquifer characterization. Journal of Groundwater42, 363–373.
    [Google Scholar]
  37. LegchenkoA., ClémentR., GaramboisS., MauryE., MicL‐M., LaurentJ‐P., DesplanqueC. and GuyardH.2011a. Locating water storage of the Luitel lake peat bog using MRS, ERT and GPR. Near Surface Geophysics9, 201–209.
    [Google Scholar]
  38. LegchenkoA., ComteJ.‐C., OfterdingerU., VouillamozJ.‐M., LawsonF.M.A. and WalshJ.2017. Joint use of singular value decomposition and Monte‐Carlo simulation for estimating uncertainty in surface NMR inversion. Journal of Applied Geophysics144, 28–36.
    [Google Scholar]
  39. LegchenkoA., DescloitresM., VincentC., GuyardH., GaramboisS., ChalikakisK. and EzerskyM.2011b. Three‐dimensional magnetic resonance imaging for groundwater. New Journal of Physics13, https://doi.org/10.1088/1367-2630/13/2/025022.
    [Google Scholar]
  40. LegchenkoA. and PierratG.2014. Glimpse into the design of MRS instrument. Near Surface Geophysics12, 297–308.
    [Google Scholar]
  41. LegchenkoA. and VallaP.2002. A review of the basic principles for proton magnetic resonance sounding measurements. Journal of Applied Geophysics50, 3–19.
    [Google Scholar]
  42. LegchenkoA., VincentC., BaltassatJ.M., GirardJ.F., ThibertE., GagliardiniO., DescloitresM., GilbertA., GaramboisS., ChevalierA. and GuyardH.2014. Monitoring water accumulation in a glacier using magnetic resonance imaging. The Cryosphere8, 155–166.
    [Google Scholar]
  43. LegchenkoA.V. and ShushakovO.A.1998. Inversion of surface NMR data. Geophysics63, 75–84.
    [Google Scholar]
  44. Lehmann‐HornJ.A., WalbreckerJ.O., HertrichM., LangstonG., McClymontA.F. and GreenA.G.2011. Imaging groundwater beneath a rugged proglacial moraine. Geophysics76, B165–B172.
    [Google Scholar]
  45. MeyerC.R. and HewittI.J.2017. A continuum model for meltwater flow through compacting snow. The Cryosphere Discussions1–24, https://doi.org/10.5194/tc-2017-128.
    [Google Scholar]
  46. MiègeC., ForsterR.R., BoxJ.E., BurgessE.W., McconnellJ.R., PasterisD.R. and SpikesV.B.2013. Southeast Greenland high accumulation rates derived from firn cores and ground‐penetrating radar. Annals of Glaciology54, https://doi.org/10.3189/2013AoG63A358.
    [Google Scholar]
  47. MiègeC., ForsterR., BruckerL., KoenigL., SolomonD.K., PadenJ., BoxJ., BurgessE., MillerJ., McNerneyL., BrautigamN., FaustoR. and GogineniS.P.2016. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. Journal of Geophysical Research, Earth Surface121, https://doi.org/10.1002/2016JF003869.
    [Google Scholar]
  48. MillerO., SolomonD.K., MiègeC., KoenigL., ForsterR., SchmerrN., LigtenbergS. and MontgomeryL.2017. Direct evidence of meltwater flow within a firn aquifer in Southeast Greenland: meltwater flow within firn aquifer. Geophysical Research Lettershttps://doi.org/10.1002/2017GL075707.
    [Google Scholar]
  49. MohnkeO. and YaramanciU.2002. Smooth and block inversion of surface NMR amplitudes and decay times using simulated annealing. Journal of Applied Geophysics50, 163–177.
    [Google Scholar]
  50. MontgomeryL.N., SchmerrN., BurdickS., ForsterR.R., KoenigL., LegchenkoA., LigtenbergS., MiègeC., MillerO.L. and SolomonD.K.2017. Investigation of firn aquifer structure in Southeastern Greenland using active source seismology. Frontiers in Earth Science5, 10.
    [Google Scholar]
  51. MoranM.L., GreenfieldR.J. and ArconeS.A.2000. Delineation of a complexly dipping temperate glacier bed using short‐pulse radar arrays. Journal of Glaciology46, 274–286.
    [Google Scholar]
  52. MorozovV.A.1966. On the solution of functional equations by the method of regularization. Soviet Mathematics ‐ Doklady7, 414–417.
    [Google Scholar]
  53. Müller‐PetkeM. and YaramanciU.2008. Resolution studies for magnetic resonance sounding (MRS) using the singular value decomposition. Journal of Applied Geophysics66, 165–175.
    [Google Scholar]
  54. MurrayT., BoothA. and RippinD.2007. Water‐content of glacier‐ice: limitations on estimates from velocity analysis of surface ground‐penetrating radar surveys. Journal of Environmental and Engineering Geophysics12, 87–99.
    [Google Scholar]
  55. MurrayT., GoochD.L. and StuartG.W.1997. Structures within the surge front at Bakaninbreen Svalbard, using ground‐penetrating radar. Annals of Glaciology24, 122–129.
    [Google Scholar]
  56. MurrayT., StuartG.W., FryM., GambleN.H. and CrabtreeM.D.2000. Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis. Journal of Glaciology46, 389–398.
    [Google Scholar]
  57. NuberA., RabensteinL., Lehmann‐HornJ.A., HertrichM., HendricksS., MahoneyA. and EickenH.2013. Water content estimates of a first‐year sea‐ice pressure ridge keel from surface‐nuclear magnetic resonance tomography. Annals of Glaciology54, 33–43.
    [Google Scholar]
  58. ParsekianA.D. and GrombacherD.2015. Uncertainty estimates for surface nuclearmagnetic resonance water content and relaxation time profiles from bootstrap statistics. Journal of Applied Geophysics119, 61–70.
    [Google Scholar]
  59. ParsekianA.D., GrosseG., WalbreckerJ.O., Müller‐PetkeM., KeatingK., LiuL., JonesB.M. and KnightR.2013. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance. Geophysical Research Letters40, 535–540.
    [Google Scholar]
  60. PetterssonR., JanssonP. and HolmlundP.2003. Cold surface layer thinning on Storglaciären, Sweden, observed by repeated ground penetrating radar surveys. Journal of Geophysical Research108, https://doi.org/10.1029/2003JF000024.
    [Google Scholar]
  61. RennermalmA.K., MoustafaS.E., MioduszewskiJ., ChuV.W., ForsterR.R., HagedornB., HarperJ.T., MoteT.L., RobinsonD.A., ShumanC.A., SmithL.C. and TedescoM.2013. Understanding Greenland ice sheet hydrology using an integrated multi‐scale approach. Environment Research Letters8, https://doi.org/10.1088/1748-9326/8/1/015017.
    [Google Scholar]
  62. RippinD., WillisI., ArnoldN., HodsonA., MooreJ., KohlerJ. and BjornssonH.2003. Changes in geometry and subglacial drainage of Midre Lovénbreen, Svalbard, determined from digital elevation models. Earth Surface Processes and Landforms28, 273–298.
    [Google Scholar]
  63. SemenovA.G., SchirovM.D., LegchenkoA.V., BurshteinA.I. and PusepA.Yu.1989. Device for measuring the parameter of underground mineral deposit. G.B. Patent 2198540B.
  64. StegerC.R., ReijmerC.H., van den BroekeM.R., WeverN., ForsterR.R., KoenigL.S., Kuipers MunnekeP., LehningM., LhermitteS., LigtenbergS.R.M., MiegeClement and Noël, B.P.Y.2017. Firn meltwater retention on the Greenland ice sheet: a model comparison. Frontiers in Earth Science5, 1–16.
    [Google Scholar]
  65. TikhonovA. and ArseninV.1977. Solution of Ill‐Posed Problems. John Wiley & Sons.
  66. TuruV.2012. Surface NMR survey on Hansbreen Glacier, Hornsund, SW Spitsbergen (Norway). Landform Analysis21, 57–74.
    [Google Scholar]
  67. VincentC., DescloitresM., GaramboisS., LegchenkoA., GuyardH., LefebvreE. and GilbertA.2012. Detection of a subglacial lake in Glacier de Tete Rousse (Mont Blanc area, France). Journal of Glaciology58, 866–878.
    [Google Scholar]
  68. WeichmanP.B., LunD.R., RitzwollerM.H. and LavelyE.2002. Study of surface nuclearmagnetic resonance inverse problems. Journal of Applied Geophysics50, 129–147.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12001
Loading
/content/journals/10.1002/nsg.12001
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): glacier , GPR , Greenland , meltwater and MRS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error