1887
Volume 20, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

A site characterization using a microtremor measurement study was conducted at the West Borneo nuclear power plant (NPP) potential site as a preliminary feasibility study. This study measured the natural resonant frequency of soil and estimated the subsurface as prior information for the design planning of an NPP building foundation. The single station microtremor data were processed using the horizontal‐to‐vertical spectral ratio (HVSR) method to obtain the and values, and the array data were processed using the spatial autocorrelation (SPAC) method. The study area was classified based on the and values. Due to the unavailability of borehole data and limited array data, the HVSR curve was used to estimate the profile. The HVSR curve estimation was calculated using Rayleigh wave ellipticity inversion. The inversion results were constrained by profiles from SPAC and regional geology data to ensure that the inverted model was rational. It was demonstrated that the constrained inversion process could generate a rational subsurface model for Pantai Gosong's coastline. Based on the result, the feasible bedrock for the NPP building foundation was found at a depth of 40 m in the coastline area.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12233
2022-09-29
2022-11-28
Loading full text...

Full text loading...

References

  1. Abdialim, S., Hakimov, F., Kim, J., Ku, T. & Moon, S.W. (2021) Seismic site classification from HVSR data using the Rayleigh wave ellipticity inversion: A case study in Singapore. Earthquake Structures., 21, 231–238. https://doi.org/10.12989/eas.2021.21.3.231
    [Google Scholar]
  2. Aki, K. (1957) Space and time spectra of stationary stochastic waves with special reference to microtremors. Bulletin of the. Earthquake Research Institute, 35, 415–456.
    [Google Scholar]
  3. Badan Standarisasi Nasional (2012) Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung. SNI, 1726, 2012. https://doi.org/10.1080/0893569032000131613
    [Google Scholar]
  4. BAPETEN (2008) Evaluasi Tapak Reaktor Daya Untuk Aspek Geoteknik Dan Pondasi Reaktor Daya.
  5. Bard, P. (1998) Microtremor measurement : a tool for site effect estimation? In: Irikura, K., Kudo, K., Okada, H. & Sasatami, T. (Eds.) Second International Symposium on the Effects of Surface Geology on Seismic Motion, Yokohama, Japan. Balkema, vol. 3, pp. 1251–1279.
    [Google Scholar]
  6. Berbellini, A., Morelli, A. & Ferreira, A.M.G. (2017) Crustal structure of northern Italy from the ellipticity of Rayleigh waves. Physics of the Earth and Planetary Interiors, 265, 1–14. https://doi.org/10.1016/j.pepi.2016.12.005
    [Google Scholar]
  7. BSSC , (2003) Nehrp recommended provisions for seismic regulations for new buildings and other structures (FEMA 450). Part 1 338. https://doi.org/10.1016/j.compgeo.2013.09.005
  8. Castellaro, S. & Mulargia, F. (2009) VS30 estimates using constrained H/V measurements. Bulletin of the Seismological Society of America, 99, 761–773. https://doi.org/10.1785/0120080179
    [Google Scholar]
  9. Cipta, A., Cummins, P., Dettmer, J., Saygin, E., Irsyam, M., Rudyanto, A. & Murjaya, J. (2018) Seismic velocity structure of the Jakarta Basin, Indonesia, using trans‐dimensional Bayesian inversion of horizontal‐to‐vertical spectral ratios. Geophysical Journal International, 215, 431–449. https://doi.org/10.1093/gji/ggy289
    [Google Scholar]
  10. Fäh, D., Wathelet, M., Kristekova, M., Havenith, H., Endrun, B., Stamm, G. et al. (2009) Using ellipticity information for site characterisation. NERIES JRA4.
  11. Foufoula‐Georgiou, E. & Kumar, P. (1994) Wavelet analysis in geophysics: an introduction, wavelet analysis and its applications. In: Foufoula‐Georgiou, E. & Kumar, P. (Eds.) Wavelets in geophysics. Wavelet Analysis and Its Applications, vol. 4. Amsterdam, the Netherlands: Elsevier, pp. 1‐43. https://doi.org/10.1016/B978‐0‐08‐052087‐2.50007‐4
    [Google Scholar]
  12. Hall, R. (1995) Plate tectonic reconstructions of the Indonesian region. In: Proceedings Indonesian Petroleum Association 24th Annual Convention. Jakarta: Indonesian Petroleum Association, pp. 71–84. https://doi.org/10.29118/ipa.464.71.84
    [Google Scholar]
  13. Hobiger, M., Cornou, C., Wathelet, M., Di Giulio, G., Knapmeyer‐Endrun, B., Renalier, F. et al. (2013) Ground structure imaging by inversions of Rayleigh wave ellipticity: Sensitivity analysis and application to European strong‐motion sites. Geophysical Journal International, 192, 207–229. https://doi.org/10.1093/gji/ggs005
    [Google Scholar]
  14. IAEA , (2004) Geotechnical aspects of site evaluation and foundations for nuclear power plants. Vienna: IAEA (International Atomic Energy Agency).
    [Google Scholar]
  15. Issaadi, A., Semmane, F., Yelles‐Chaouche, A., Galiana‐Merino, J.J. & Layadi, K. (2020) A shear‐wave velocity model in the city of Oued‐Fodda (northern Algeria) from Rayleigh wave ellipticity inversion. Applied Science, 10, 1717. https://doi.org/10.3390/app10051717
    [Google Scholar]
  16. Iswanto, E.R., Indrawati, Y. & Riyanto, T.A. (2019) Studi Mikrotremor dengan Metode Horizontal to Vertical Spectral Ratio (HVSR) di Tapak RDE [Serpong microtremor study using horizontal to vertical spectral ratio (HVSR) method in RDE site Serpong. Eksplorium: Buletin Pusat Pengembangan Bahan Galian Nuklir, 40, 105–114. https://doi.org/10.17146/eksplorium.2019.40.2.5489
    [Google Scholar]
  17. Iswanto, E.R., Ryanto, T.A., Suntoko, H. & Suryanto, S. (2020) Estimasi Profil Kecepatan Gelombang Geser di Daerah Pantai Gosong, Kalimantan Barat. In: Prosiding Seminar Nasional Teknologi Energi Nuklir. Serpong: Kedeputian Teknologi Energi Nuklir‐BATAN, pp. 347–353.
    [Google Scholar]
  18. Knapmeyer‐Endrun, B., Golombek, M.P. & Ohrnberger, M. (2017) Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia, Mars. Space Science Review, 211, 339–382. https://doi.org/10.1007/s11214‐016‐0300‐1
    [Google Scholar]
  19. Konno, K. & Ohmachi, T. (1998) Ground‐motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bulletin of the Seismological Society of America, 88, 228–241.
    [Google Scholar]
  20. Ku, T., Palanidoss, S., Zhang, Y., Moon, S.W., Wei, X., Huang, E.S. et al. (2020) Practical configured microtremor array measurements (MAMs) for the geological investigation of underground space. Underground Space, 6, 240–251. https://doi.org/10.1016/j.undsp.2020.01.004
    [Google Scholar]
  21. Marios, A. & Nikos, T. (2010) Report on “correlation between site response and site characteristics” for the examined NERIES‐JRA4 sites. D8‐report. NEtwork of Research Infrastructures for European Seismology,
  22. Menteri Riset Teknologi dan Pendidikan Tinggi Republik Indonesia . (2019) Peraturan Menteri Riset, Teknologi, dan Pendidikan Tinggi Nomor 38 Tahun 2019 Tentang Prioritas Riset Nasional (PRN) Tahun 2020–2024. Indonesia.
  23. Molnar, S., Cassidy, J.F., Castellaro, S., Cornou, C., Crow, H., Hunter, J.A. et al. (2018) Application of Microtremor Horizontal‐to‐Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art. Surveys in Geophysics, 39, 613–631. https://doi.org/10.1007/s10712‐018‐9464‐4
    [Google Scholar]
  24. Moon, S.W., Subramaniam, P., Zhang, Y., Vinoth, G. & Ku, T. (2019) Bedrock depth evaluation using microtremor measurement: Empirical guidelines at weathered granite formation in Singapore. Journal of Applied Geophysics, 171, 103866. https://doi.org/10.1016/j.jappgeo.2019.103866
    [Google Scholar]
  25. Mundepi, A.K., Galiana‐Merino, J.J., Asthana, A.K.L. & Rosa‐Cintas, S. (2015) Soil characteristics in Doon Valley (north west Himalaya, India) by inversion of H/V spectral ratios from ambient noise measurements. Soil Dynamics and Earthquake Engineering, 77, 309–320. https://doi.org/10.1016/j.soildyn.2015.06.006
    [Google Scholar]
  26. Nagamani, D., Sivaram, K., Rao, N.P. & Satyanarayana, H.V.S. (2020) Ambient noise and earthquake HVSR modelling for site characterization in southern mainland, Gujarat. Journal of Earth System Science, 129. https://doi.org/10.1007/s12040‐020‐01443‐8
    [Google Scholar]
  27. Nakamura, Y. (2000) Clear identification of fundamental idea of Nakamura's technique and its applications. Paper no. 2656. In: The 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January‐4 February 2000.
  28. Nakamura, Y. (1989) Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. Railway Technical Research Institute, Quarterly Reports, 30, 25–33.
    [Google Scholar]
  29. Nogoshi, M. & Igarashi, T. (1971) Amplitude characteristics of microtremor. Journal of the Seismological Society of Japan. 2nd ser., 379, 350–379.
    [Google Scholar]
  30. Okada, H. & Suto, K. (2003) The microtremor survey method. Geophysical monographs series no. 12, The Microtremor Survey Method. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801740
    [Google Scholar]
  31. Park, C. (2013) MASW for geotechnical site investigation. Leading Edge, 32, 656–662.
    [Google Scholar]
  32. Pierre‐Yves, B.A.R.D., Anastasiadis, A., Atakan, K. & Azzara, R.M. (2004) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations‐measurements, processing and interpretations. SESAME European Research Project, SESAME European Research Project WP12 – Deliverable D23.12.
    [Google Scholar]
  33. Poggi, V., Edwards, B. & Fäh, D. (2012) The quarter‐wavelength average velocity: A review of some past and recent application developments. In: 15th World Conference on Earthquake Engineering.
    [Google Scholar]
  34. Ryanto, T.A., Iswanto, E.R., Indrawati, Y., Setiaji, A.B.W. & Suntoko, H. (2020) Sediment thickness estimation in Serpong experimental power reactor site using HVSR method. Jurnal Pengembangan Energi Nuklir, 22, 29–37.
    [Google Scholar]
  35. Sambridge, M. (1999) Geophysical inversion with a neighbourhood algorithm ‐ I. Searching a parameter space. Geophysical Journal International, 138, 479–494. https://doi.org/10.1046/j.1365‐246X.1999.00876.x
    [Google Scholar]
  36. Seht, M.I.V. & Wohlenberg, J. (1999) Microtremor measurements used to map thickness of soft sediments. Bulletin of the Seismological Society of America, 89, 250–259.
    [Google Scholar]
  37. Siregar, I.S. & Madlazim (2017) Analisis Mikrotremor Dengan Metode Hvsr Untuk Mengetahui Zona Penguatan Gempa Bumi Di Wilayah Stasiun Seismik Jawa Timur. Jurnal Inovasi Fisika Indonesia, 6, 33–38.
    [Google Scholar]
  38. Snieder, R. & Trampert, J. (2000) Linear and nonlinear inverse problems. In: DermanisA., GrünA., & SansòF. (Eds.) Geomatic method for the analysis of data in the earth sciences. Lecture Notes in Earth Sciences Vol. 95. Berlin, Springer, pp. 93–164. https://doi.org/10.1007/3‐540‐45597‐3_3
    [Google Scholar]
  39. Sunardi, B. (2019) Vs30 mapping and soil classification in the southern part of Kulon Progo using Rayleigh wave ellipticity inversion. Journal of Geospatial Information Science and Engineering, 1, 58–64. https://doi.org/10.22146/jgise.39780
    [Google Scholar]
  40. Susilanto, P., Ngadmanto, D., Hardy, T. & Pakpahan, S. (2016) Penerapan Metode Mikrotremor HVSR untuk Penentuan Respons Dinamika Kegempaan di Kota Padang. Jurnal Lingkungan dan Bencana Geologi, 7, 79–88.
    [Google Scholar]
  41. Suwarna, N. & Langford, R.P. (1993) Peta Geologi Lembar Singkawang, Kalimantan. Pusat Penelitian dan Pengembangan Geologi, Bandung.
  42. Wathelet, M., Chatelain, J.L., Cornou, C., Giulio, G.D., Guillier, B., Ohrnberger, M. & Savvaidis, A. (2020) Geopsy: A User‐friendly open‐source tool set for ambient vibration processing. Seismological Research Letters, 91, 1878–1889. https://doi.org/10.1785/0220190360
    [Google Scholar]
  43. Wathelet, M., Jongmans, D. & Ohrnberger, M. (2004) Surface‐wave inversion using a direct search algorithm and its application to ambient vibration measurements. Near Surface Geophysics, 2, 211–221. https://doi.org/10.3997/1873‐0604.2004018
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12233
Loading
/content/journals/10.1002/nsg.12233
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): geophysics; H/V spectral ratio; inversion; site characterization; S‐wave
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error