1887
Volume 20, Issue 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

Abstract

Determining subsurface electromagnetic (EM) wave velocity is critical for ground‐penetrating radar (GPR) data analysis, as velocity is used for the time‐to‐depth conversion, and hence leads to obtaining the precise location of the objects of interest. Currently, the way to acquire detailed subsurface EM wave velocity models involves employing multi‐offset GPR surveys, such as wide‐angle reflection‐refraction (WARR), in conjunction with normal moveout (NMO) based velocity analysis. Traditionally, these surveys are carried out using two separate transducers and were, therefore, time‐consuming and had limited uptake. Recent advances in GPR hardware have allowed the development of novel systems with multi‐concurrent sampling receivers, which enable rapid and dense acquisition of WARR data. These additional receivers increase the overall size, weight and cost of the system. Therefore, we investigated the effects of receiver arrangement on NMO‐based velocity analysis and considered reducing the overall number of transducers, whilst maintaining satisfactory velocity spectra resolution and, hence, obtaining detailed stacking velocity models as well as improved stacked reflection sections. We used both simulated data from complex three‐dimensional models as well as field data and examined different numbers and positions of receivers in different environments. Our results show that velocity spectra resolution can be maintained within acceptable limits whilst reducing the number of receivers from a configuration with seven equally spaced receivers, to a sparse configuration of four receivers. Thus, being able to decrease the number of receivers used by these new GPR systems will reduce both the total system weight and cost and, hopefully, increase their adoption for GPR surveys.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12235
2022-09-29
2022-11-28
Loading full text...

Full text loading...

/deliver/fulltext/nsg/20/5/nsg12235.html?itemId=/content/journals/10.1002/nsg.12235&mimeType=html&fmt=ahah

References

  1. Alani, A.M., Giannakis, I., Zou, L., Lantini, L. & Tosti, F. (2020) Reverse‐time migration for evaluating the internal structure of tree‐trunks using ground‐penetrating radar. NDT & E International, 115, 102294. https://doi.org/10.1016/j.ndteint.2020.102294
    [Google Scholar]
  2. Angelis, D., Tsourlos, P., Tsokas, G., Vargemezis, G., Zacharopoulou, G. & Power, C. (2018) Combined application of GPR and ERT for the assessment of a wall structure at the Heptapyrgion fortress (Thessaloniki, Greece). Journal of Applied Geophysics, 152, 208–220. https://doi.org/10.1016/j.jappgeo.2018.04.003
    [Google Scholar]
  3. Angelis, D., Warren, C. & Diamanti, N. (2020) A software toolset for processing and visualization of single and multi‐offset GPR data. In: 18th International Conference on Ground Penetrating Radar, Golden, CO, 14–19 June 2020. Houston, TX: Society of Exploration Geophysicists, pp. 320–323. https://doi.org/10.1190/gpr2020‐084.1
    [Google Scholar]
  4. Angelis, D., Warren, C. & Diamanti, N. (2019) Preliminary development of a workflow for processing multi‐concurrent receiver GPR data. In: 10th International Workshop on Advanced Ground Penetrating Radar. Bunnik, The Netherlands: European Association of Geoscientists & Engineers, vol. 1, pp. 1–7. https://doi.org/10.3997/2214‐4609.201902572
    [Google Scholar]
  5. Angelis, D., Warren, C., Diamanti, N., Martin, J. & Annan, A.P. (2022) Development of a workflow for processing gpr data from multi‐concurrent receivers. Geophysics, 87(4), WB9–WB18. https://doi.org/10.1190/geo2021‐0376.1
    [Google Scholar]
  6. Annan, A.P. (2005) 11. Ground‐penetrating radar. In: Near‐surface geophysics (pp. 357–438.). Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801719.ch11
    [Google Scholar]
  7. Annan, A.P. & Jackson, S.R. (2017) The WARR Machine. In: 2017 9th International Workshop on Advanced Ground Penetrating Radar, IWAGPR 2017 ‐ Proceedings. Piscataway, NJ: IEEE, pp. 1–4. https://doi.org/10.1109/IWAGPR.2017.7996106
    [Google Scholar]
  8. Becht, A., Appel, E. & Dietrich, P. (2006) Analysis of multi‐offset GPR data: A case study in a coarse‐grained gravel aquifer. Near Surface Geophysics, 4(4), 227–240. https://doi.org/10.3997/1873‐0604.2005047
    [Google Scholar]
  9. Booth, A.D., Clark, R.A., Hamilton, K. & Murray, T. (2010) Multi‐offset ground penetrating radar methods to image buried foundations of a Medieval Town Wall, Great Yarmouth, UK. Archaeological Prospection, 17(2), 103–116. https://doi.org/10.1002/arp.377
    [Google Scholar]
  10. Booth, A.D., Clark, R.A. & Murray, T. (2010) Semblance response to a ground‐penetrating radar wavelet and resulting errors in velocity analysis. Near Surface Geophysics, 8(3), 235–246. https://doi.org/10.3997/1873‐0604.2010008
    [Google Scholar]
  11. Bradford, J.H. (2004) 3D multi‐offset, multi‐polarization acquisition and processing of GPR data: A controlled DNAPL spill experiment. In: Symposium on the Application of Geophysics to Engineering and Environmental Problems 2004. Denver, CO: Environment and Engineering Geophysical Society, pp. 514–527. https://doi.org/10.4133/1.2923365
    [Google Scholar]
  12. Bradford, J.H., Clement, W.P. & Barrash, W. (2009) Estimating porosity with ground‐penetrating radar reflection tomography: A controlled 3‐D experiment at the Boise Hydrogeophysical Research Site. Water Resources Research, 45(4), https://doi.org/10.1029/2008WR006960
    [Google Scholar]
  13. Causse, E. & Sénéchal, P. (2006) Model‐based automatic dense velocity analysis of GPR field data for the estimation of soil properties. Journal of Geophysics and Engineering, 3(2), 169–176. https://doi.org/10.1088/1742‐2132/3/2/008
    [Google Scholar]
  14. Church, G., Grab, M., Schmelzbach, C., Bauder, A. & Maurer, H. (2020) Monitoring the seasonal changes of an englacial conduit network using repeated ground‐penetrating radar measurements. Cryosphere, 14(10), 3269–3286. https://doi.org/10.5194/tc‐14‐3269‐2020
    [Google Scholar]
  15. Dal Bo, I., Klotzsche, A., Schaller, M., Ehlers, T.A., Kaufmann, M.S., Fuentes Espoz, J.P. et al. (2019) Geophysical imaging of regolith in landscapes along a climate and vegetation gradient in the Chilean coastal cordillera. Catena, 180, 146–159. https://doi.org/10.1016/j.catena.2019.04.023
    [Google Scholar]
  16. De Domenico, D., Teramo, A. & Campo, D. (2013) GPR surveys for the characterization of foundation plinths within a seismic vulnerability analysis. Journal of Geophysics and Engineering, 10(3),. https://doi.org/10.1088/1742‐2132/10/3/034007
    [Google Scholar]
  17. Diamanti, N., Annan, A.P. & Redman, J.D. (2017) Concrete bridge deck deterioration assessment using ground penetrating radar (GPR). Journal of Environmental and Engineering Geophysics, 22(2), 121–132. https://doi.org/10.2113/JEEG22.2.121
    [Google Scholar]
  18. Diamanti, N., Judith Elliott, E., Jackson, S.R. & Peter Annan, A. (2018) The WARR Machine: System design, implementation and data. Journal of Environmental and Engineering Geophysics, 23(4), 469–487. https://doi.org/10.2113/JEEG23.4.469
    [Google Scholar]
  19. Dix, C.H. (1955) Seismic velocities from surface measurements. Geophysics, 20(1), 68–86. https://doi.org/10.1190/1.1438126
    [Google Scholar]
  20. Endres, A.L., Murray, T., Booth, A.D. & West, L.J. (2009) A new framework for estimating englacial water content and pore geometry using combined radar and seismic wave velocities. Geophysical Research Letters, 36(4), https://doi.org/10.1029/2008GL036876
    [Google Scholar]
  21. Fisher, E., McMechan, G.A. & Annan, A.P. (1992) Acquisition and processing of wide‐aperture ground‐penetrating radar data. Geophysics, 57(3), 495–504. https://doi.org/10.1190/1.1443265
    [Google Scholar]
  22. Forte, E. & Pipan, M. (2017) Review of multi‐offset GPR applications: Data acquisition, processing and analysis. Signal Processing, 132, 210–220. https://doi.org/10.1016/j.sigpro.2016.04.011
    [Google Scholar]
  23. Giannakis, I., Giannopoulos, A. & Warren, C. (2021) A machine learning scheme for estimating the diameter of reinforcing bars using ground penetrating radar. IEEE Geoscience and Remote Sensing Letters, 18(3), 461–465. https://doi.org/10.1109/LGRS.2020.2977505
    [Google Scholar]
  24. Giannopoulos, A. (2005) Modelling ground penetrating radar by GprMax. Construction and Building Materials, 19(10), 755–762. https://doi.org/10.1016/j.conbuildmat.2005.06.007
    [Google Scholar]
  25. Greaves, R.J., Lesmes, D.P., Lee, J.M. & Toksöz, M.N. (1996) Velocity variations and water content estimated from multi‐offset, ground‐penetrating radar. Geophysics, 61(3), 683–695. https://doi.org/10.1190/1.1443996
    [Google Scholar]
  26. Hamran, S.E., Paige, D.A., Amundsen, H.E.F., Berger, T., Brovoll, S., Carter, L. et al. (2020) Radar imager for Mars’ subsurface experiment—RIMFAX. Space Science Reviews, 216(8), 128. https://doi.org/10.1007/s11214‐020‐00740‐4
    [Google Scholar]
  27. Huisman, J.A., Hubbard, S.S., Redman, J.D. & Annan, A.P. (2003) Measuring soil water content with ground penetrating radar: a review. Vadose Zone Journal, 2(4), 476–491. https://doi.org/10.2113/2.4.476
    [Google Scholar]
  28. Igel, J., Günther, T. & Kuntzer, M. (2013) Ground‐penetrating radar insight into a coastal aquifer: The freshwater lens of Borkum Island. Hydrology and Earth System Sciences, 17(2), 519–531. https://doi.org/10.5194/hess‐17‐519‐2013
    [Google Scholar]
  29. Jonard, F., Andre, F., Pinel, N., Warren, C., Vereecken, H. & Lambot, S. (2019) Modeling of multilayered media Green's functions with rough interfaces. IEEE Transactions on Geoscience and Remote Sensing, 57(10), 7671–7681. https://doi.org/10.1109/TGRS.2019.2915676
    [Google Scholar]
  30. Kaufmann, M.S., Klotzsche, A., Vereecken, H. & van der Kruk, J. (2020) Simultaneous multichannel multi‐offset ground‐penetrating radar measurements for soil characterization. Vadose Zone Journal, 19(1), e20017. https://doi.org/10.1002/vzj2.20017
    [Google Scholar]
  31. Klotzsche, A., Jonard, F., Looms, M.C., van der Kruk, J. & Huisman, J.A. (2018) Measuring soil water content with ground penetrating radar: a decade of progress. Vadose Zone Journal, 17(1), 180052. https://doi.org/10.2136/vzj2018.03.0052
    [Google Scholar]
  32. Liu, H. & Sato, M. (2012) Dynamic groundwater level estimation by the velocity spectrum analysis of GPR. In: 2012 14th International Conference on Ground Penetrating Radar, GPR 2012. Piscataway, NJ: IEEE, pp. 413–418. https://doi.org/10.1109/icgpr.2012.6254901
    [Google Scholar]
  33. Looyenga, H. (1965) Dielectric constants of heterogeneous mixtures. Physica, 31(3), 401–406. https://doi.org/10.1016/0031‐8914(65)90045‐5
    [Google Scholar]
  34. Luo, T.X.H., Lai, W.W.L. & Giannopoulos, A. (2020) Forward modelling on GPR responses of subsurface air voids. Tunnelling and Underground Space Technology, 103, 103521. https://doi.org/10.1016/j.tust.2020.103521
    [Google Scholar]
  35. Macheret, Y.Y., Moskalevsky, M.Y. & Vasilenko, E.V. (1993) Velocity of radio waves in glaciers as an indicator of their hydrothermal state, structure and regime. Journal of Glaciology, 39(132), 373–384. https://doi.org/10.3189/s0022143000016038
    [Google Scholar]
  36. Mayne, W.H. (1962) Common reflection point horizontal data stacking techniques. Geophysics, 27(6), 927–938. https://doi.org/10.1190/1.1439118
    [Google Scholar]
  37. Murray, T., Booth, A.D. & Rippin, D.M. (2007) Water‐content of glacier‐ice: limitations on estimates from velocity analysis of surface ground‐penetrating radar surveys. Journal of Environmental and Engineering Geophysics, 12(1), 87–99. https://doi.org/10.2113/JEEG12.1.87
    [Google Scholar]
  38. Murray, T., Stuart, G.W., Fry, M., Gamble, N.H. & Crabtree, M.D. (2000) Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis. Journal of Glaciology, 46(154), 389–398. https://doi.org/10.3189/172756500781833188
    [Google Scholar]
  39. Nakashima, Y., Zhou, H. & Sato, M. (2001) Estimation of groundwater level by GPR in an area with multiple ambiguous reflections. Journal of Applied Geophysics, 47(3–4), 241–249. https://doi.org/10.1016/S0926‐9851(01)00068‐4
    [Google Scholar]
  40. Neidell, N.S. & Taner, M.T. (1971) Semblance and other coherency measures for multichannel data. Geophysics, 36(3), 482–497. https://doi.org/10.1190/1.1440186
    [Google Scholar]
  41. Peplinski, N.R., Ulaby, F.T. & Dobson, M.C. (1995) Dielectric properties of soils in the 0.3–1.3‐GHz range. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 803–807. https://doi.org/10.1109/36.387598
    [Google Scholar]
  42. Pipan, M., Baradello, L., Forte, E., Prizzon, A. & Finetti, I. (1999) 2‐D and 3‐D processing and interpretation of multi‐fold ground penetrating radar data: a case history from an archaeological site. Journal of Applied Geophysics, 41(2–3), 271–292. https://doi.org/10.1016/S0926‐9851(98)00047‐0
    [Google Scholar]
  43. Sarkar, D., Baumel, R.T. & Larner, K.L. (2002) Velocity analysis in the presence of amplitude variation. Geophysics, 67(5), 1664–1672. https://doi.org/10.1190/1.1512814
    [Google Scholar]
  44. Sarkar, D., Castagna, J.P. & Lamb, W.J. (2001) AVO and velocity analysis. Geophysics, 66(4), 1284–1293. https://doi.org/10.1190/1.1487076
    [Google Scholar]
  45. Taflove, A. & Hagness, S.C. (2005) In: Computational electrodynamics: The finite‐difference time‐domain method (3rd ed.). Boston, MA: Artech House. https://us.artechhouse.com/Computational‐Electrodynamics‐Third‐Edition‐P1929.aspx
    [Google Scholar]
  46. Taner, M.T. & Koehler, F. (1969) Velocity spectra. Digital computer derivation and applications of velocity functions. Geophysics, 34(6), 859–881. https://doi.org/10.1190/1.1440058
    [Google Scholar]
  47. Topp, G.C., Davis, J.L. & Annan, A.P. (1980) Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 16(3), 574–582. https://doi.org/10.1029/WR016i003p00574
    [Google Scholar]
  48. Turesson, A. (2006) Water content and porosity estimated from ground‐penetrating radar and resistivity. Journal of Applied Geophysics, 58(2), 99–111. https://doi.org/10.1016/j.jappgeo.2005.04.004
    [Google Scholar]
  49. van der Kruk, J., Jacob, R.W. & Vereecken, H. (2010) Properties of precipitation‐induced multilayer surface waveguides derived from inversion of dispersive TE and TM GPR data. Geophysics, 75(4), WA263–WA273. https://doi.org/10.1190/1.3467444
    [Google Scholar]
  50. Warren, C., Giannopoulos, A. & Giannakis, I. (2016) gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Computer Physics Communications, 209, 163–170. https://doi.org/10.1016/j.cpc.2016.08.020
    [Google Scholar]
  51. Yilmaz, Ö. (2001) Seismic data analysis. In: Seismic data analysis. Houston, TX: Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801580
    [Google Scholar]
  52. Zhou, H.‐W. (2014) Practical seismic data analysis. In: Practical seismic data analysis. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/cbo9781139027090
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12235
Loading
/content/journals/10.1002/nsg.12235
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): data processing; GPR; ground‐penetrating radar; modelling; velocity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error