1887
Volume 22, Issue 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

Altered crystalline catchments are complex to study and model, as they present multi‐scale properties that control their hydrogeological behaviour and that are difficult to capture through a single geophysical imaging technique. Several volumes of interest must be sampled in order that both small‐scale (porosity, layering) and large‐scale (bedrock, weathering, faults) heterogeneities can be captured. We propose a geoelectrical model of the Strengbach catchment (Vosges Mountains, France), aiming at identifying the weathered structures and hydrogeological functioning of the aquifer. This is achieved through electrical resistivity tomography (ERT) and Controlled‐Source Audio‐Magnetotelluric (CSAMT) measurements and the use of appropriate measurement set‐ups. Meters‐scale shallow contrasts in the top soil, catchment‐scale shallow contrasts (top 30 m), and large‐scale vertical contrasts (up to 150 m) were resolved through this methodology. A structural interpretation is proposed, based on information provided by borehole measurements (gamma ray, optical images), analysis of sampled waters, and geological mapping. The limits at depth of the weathered and fractured granite, not detected by ERT, are detected by CSAMT. The analysis showed that the weathering state of the granite controls, at first order, the electrical resistivity signal. Shallow geoelectrical signal (first 30 m) is particularly driven by surface conductivity and hence by the clay content, whereas deep geoelectrical signal may arise from both the ionic content of pore waters and the clay content. A structural model is proposed and discussed. Geoelectrical contrasts revealed several qualities of weathered saprolite between the northern and the southern slopes. The inferred structural model and the distribution of weathered and unweathered crystalline units are considered for their respective effect on the hydrogeology, leading to the proposition of a new hydrogeological conceptual model of the catchment.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12268
2024-01-17
2024-04-27
Loading full text...

Full text loading...

References

  1. Ackerer, J. (2017) Mécanismes et taux de dénudation d'un bassin versant élémentaire (Strengbach, France): apport de l'étude couplée des méthodes de datation isotopique (déséquilibres U‐Th‐Ra, 10Be in situ) et des méthodes de modélisation hydrogéochimique (KIRMAT) (Doctoral dissertation). Université de Strasbourg.
  2. Alle, I.C., Descloitres, M., Vouillamoz, J.M., Yalo, N., Lawson, F.M.A. & Adihou, A.C. (2018) Why 1D electrical resistivity techniques can result in inaccurate siting of boreholes in hard rock aquifers and why electrical resistivity tomography must be preferred: The example of Benin, West Africa. Journal of African Earth Sciences, 139, 341–353.
    [Google Scholar]
  3. Baltassat, J.‐M., Legchenko, A., Ambroise, B., Mathieu, F., Lachassagne, P., Wyns, R. et al. (2005) Magnetic resonance sounding (MRS) and resistivity characterisation of a mountain hard rock aquifer: the Ringelbach Catchment, Vosges Massif, France. Near Surface Geophysics, 3(4), 267–274.
    [Google Scholar]
  4. Beauvais, A., Ritz, M., Parisot, J.‐C., Dukhan, M. & Bantsimba, C. (1999) Analysis of poorly stratified lateritic terrains overlying a granitic bedrock in West Africa, using 2‐D electrical resistivity tomography. Earth and Planetary Science Letters, 173(4), 413–424.
    [Google Scholar]
  5. Befus, K., Sheehan, A., Leopold, M., Anderson, S. & Anderson, R. (2011) Seismic constraints on critical zone architecture, Boulder Creek watershed, Front Range, Colorado. Vadose Zone Journal, 10(3), 915–927.
    [Google Scholar]
  6. Belghoul, A. (2007) Caractérisation pétrophysique et hydrodynamique du socle cristallin (PhD thesis). France: University of Montpellier II.
  7. Boutin, R., Montigny, R. & Thuizat, R. (1995) Chronologie K‐Ar et 39Ar‐40Ar du métamorphisme et du magmatisme des Vosges. Comparaison avec les massifs varisques avoisinants. Géologie de la France, 1(1), 3–25.
    [Google Scholar]
  8. Braga, M.S., Paquet, H. & Begonha, A. (2002) Weathering of granites in a temperate climate (NW Portugal): granitic saprolites and arenization. Catena, 49(1–2), 41–56.
    [Google Scholar]
  9. Braun, J., Mercier, J., Guillocheau, F. & Robin, C. (2016) A simple model for regolith formation by chemical weathering. Journal of Geophysical Research: Earth Surface, 121(11), 2140–2171.
    [Google Scholar]
  10. Cassidy, R., Comte, J.C., Nitsche, J., Wilson, C., Flynn, R. & Ofterdinger, U. (2014) Combining multi‐scale geophysical techniques for robust hydro‐structural characterisation in catchments underlain by hard rock in post‐glacial regions. Journal of Hydrology, 517, 715–731.
    [Google Scholar]
  11. Chaffaut, Q., Hinderer, J., Masson, F., Viville, D., Bernard, J.‐D., Cotel, S. et al. (2020) Continuous monitoring with a superconducting gravimeter as a proxy for water storage changes in a mountain catchment. Berlin, Heidelberg: Springer. https://doi.org/10.1007/1345_2020_105
    [Google Scholar]
  12. Chaffaut, Q., Hinderer, J., Masson, F., Viville, D., Pasquet, S., Boy, J. et al. (2021) New insights on water storage dynamics in a mountainous catchment from superconducting gravimetry. Geophysical Journal International, 228(1), 432–446.
    [Google Scholar]
  13. Cho, M., Choi, Y., Ha, K., Kee, W., Lachassagne, P. & Wyns, R. (2003) Relationship between the permeability of hard rock aquifers and their weathering, from geological and hydrogeological observations in South Korea. In: International Association of Hydrogeologists Conference on “Groundwater in fractured rocks.”, 15–19 September 2003, Prague.
  14. Cividini, D., Lemarchand, D., Chabaux, F., Boutin, R. & Pierret, M.‐C. (2010) From biological to lithological control of the B geochemical cycle in a forest watershed (Strengbach, Vosges). Geochimica et Cosmochimica Acta, 74(11), 3143–3163.
    [Google Scholar]
  15. Comte, J.‐C., Cassidy, R., Nitsche, J., Ofterdinger, U., Pilatova, K. & Flynn, R. (2012) The typology of Irish hard‐rock aquifers based on an integrated hydrogeological and geophysical approach. Hydrogeology Journal, 20(8), 1569–1588.
    [Google Scholar]
  16. Comte, J.‐C., Ofterdinger, U., Legchenko, A., Caulfield, J., Cassidy, R. & González, J.M. (2019) Catchment‐scale heterogeneity of flow and storage properties in a weathered/fractured hard rock aquifer from resistivity and magnetic resonance surveys: implications for groundwater flow paths and the distribution of residence times. Geological Society, London, Special Publications, 479(1), 35–58.
    [Google Scholar]
  17. Courtois, N., Lachassagne, P., Wyns, R., Blanchin, R., Bougaïré, F.D., Somé, S. & Tapsoba, A. (2010) Large‐scale mapping of hard‐rock aquifer properties applied to Burkina Faso. Groundwater, 48(2), 269–283.
    [Google Scholar]
  18. Dambrine, E., Le Goaster, S. & Ranger, J. (1991) Croissance et nutrition minérale d'un peuplement d'épicéa sur sol pauvre. II: Prélèvement racinaire et translocation d'éléments minéraux au cours de la croissance. Acta Oecologica, 12(6), 791–808.
    [Google Scholar]
  19. Dambrine, E. (1992) Acidification et désaturation des sols. Ministère de l'Agriculture et de la Forêt.
    [Google Scholar]
  20. Dambrine, E., Ranger, J., Pollier, B., Bonneau, M., Granier, A., Carisey, N. et al. (1992) Influence of various stresses on Ca and Mg nutrition of a spruce stand developed on acidic soil. In: Teller, A., Matthy, P. & Jeffers, J.N.R. (Eds.) Responses of forest ecosystems to environmental changes. Amsterdam: Elsevier, pp. 465–472.
    [Google Scholar]
  21. Dewandel, B., Lachassagne, P., Wyns, R., Maréchal, J. & Krishnamurthy, N. (2006) A generalized 3‐D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 330(1–2), 260–284.
    [Google Scholar]
  22. Fichter, J., Turpault, M.‐P., Dambrine, E. & Ranger, J. (1998) Mineral evolution of acid forest soils in the Strengbach catchment (Vosges mountains, NE France). Geoderma, 82(4), 315–340.
    [Google Scholar]
  23. Gaillardet, J., Braud, I., Hankard, F., Anquetin, S., Bour, O., Dorfliger, N. et al. (2018) OZCAR: The French network of critical zone observatories. Vadose Zone Journal, 17, 180067. https://doi.org/10.2136/vzj2018.04.006
    [Google Scholar]
  24. Gangloff, S., Stille, P., Pierret, M.‐C., Weber, T. & Chabaux, F. (2014) Characterization and evolution of dissolved organic matter in acidic forest soil and its impact on the mobility of major and trace elements (case of the Strengbach watershed). Geochimica et Cosmochimica Acta, 130, 21–41.
    [Google Scholar]
  25. Giao, P.H., Weller, A., Hien, D.H. & Adisornsupawat, K. (2008) An approach to construct the weathering profile in a hilly granitic terrain based on electrical imaging. Journal of Applied Geophysics, 65(1), 30–38.
    [Google Scholar]
  26. Goddéris, Y., Roelandt, C., Schott, J., Pierret, M.‐C. & François, L.M. (2009) Towards an integrated model of weathering, climate, and biospheric processes. Reviews in Mineralogy and Geochemistry, 70(1), 411–434.
    [Google Scholar]
  27. Günther, T., Rücker, C. & Spitzer, K. (2006) Three‐dimensional modelling and inversion of DC resistivity data incorporating topography—II. Inversion. Geophysical Journal International, 166(2), 506–517.
    [Google Scholar]
  28. Howard, K.W.F., Hughes, M., Charlesworth, D.L. & Ngobi, G. (1992) Hydrogeologic evaluation of fracture permeability in crystalline basement aquifers of Uganda. Applied Hydrogeology, 1(1), 55–65.
    [Google Scholar]
  29. Jones, M.J. (1985) The weathered zone aquifers of the basement complex areas of Africa. Quarterly Journal of Engineering Geology and Hydrogeology, 18(1), 35–46.
    [Google Scholar]
  30. Lachassagne, P., Wyns, R. & Dewandel, B. (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145–161.
    [Google Scholar]
  31. Lajaunie, M. (2020) Geo‐electrical methods for hydrogeological studies – capabilities and limits for the analysis of deep‐seated landslides and mountainous watersheds (PhD thesis). University of Strasbourg.
  32. Le Borgne, T., Bour, O., Riley, M., Gouze, P., Pezard, P., Belghoul, A. et al. (2007) Comparison of alternative methodologies for identifying and characterizing preferential flow paths in heterogeneous aquifers. Journal of Hydrology, 345(3–4), 134–148.
    [Google Scholar]
  33. Legchenko, A., Baltassat, J.‐M., Bobachev, A., Martin, C., Robain, H. & Vouillamoz, J.‐M. (2004) Magnetic resonance sounding applied to aquifer characterization. Groundwater, 42(3), 363–373.
    [Google Scholar]
  34. Leopold, M., Völkel, J., Huber, J. & Dethier, D. (2013) Subsurface architecture of the Boulder Creek Critical Zone Observatory from electrical resistivity tomography. Earth Surface Processes and Landforms, 38(12), 1417–1431.
    [Google Scholar]
  35. Lesparre, N., Girard, J.F., Jeannot, B., Weill, S., Dumont, M., Boucher, M. et al. (2020) Magnetic resonance sounding measurements as posterior information to condition hydrological model parameters: application to a hard‐rock headwater catchment. Journal of Hydrology, 587, 124941.
    [Google Scholar]
  36. Lin, H., Hopmans, J.W. & Richter, D.B. (2011) Interdisciplinary sciences in a global network of critical zone observatories. Vadose Zone Journal, 10(3), 781–785.
    [Google Scholar]
  37. Linde, N. & Pedersen, L.B. (2004) Evidence of electrical anisotropy in limestone formations using the RMT technique. Geophysics, 69(4), 909–916.
    [Google Scholar]
  38. Maréchal, J.‐C., Dewandel, B. & Subrahmanyam, K. (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered‐fractured layer of a hard rock aquifer. Water Resources Research, 40(11), 17.
    [Google Scholar]
  39. Migoń, P. & Lidmar‐Bergström, K. (2002) Deep weathering through time in central and northwestern Europe: problems of dating and interpretation of geological record. Catena, 49(1–2), 25–40.
    [Google Scholar]
  40. Monteiro Santos, F.A., Afonso, A.R.A. & Dupis, A. (2007) 2D joint inversion of dc and scalar audio‐magnetotelluric data in the evaluation of low enthalpy geothermal fields. Journal of Geophysics and Engineering, 4(1), 53–62.
    [Google Scholar]
  41. Olona, J., Pulgar, J.A., Fernández‐Viejo, G., López‐Fernández, C. & González‐Cortina, J.M. (2010) Weathering variations in a granitic massif and related geotechnical properties through seismic and electrical resistivity methods. Near Surface Geophysics, 8(6), 585–599.
    [Google Scholar]
  42. Parsekian, A., Singha, K., Minsley, B.J., Holbrook, W.S. & Slater, L. (2015) Multiscale geophysical imaging of the critical zone. Reviews of Geophysics, 53(1), 1–26.
    [Google Scholar]
  43. Pasquet, S., Marçais, J., Hayes, J.L., Sak, P.B., Ma, L. & Gaillardet, J. (2022) Catchment‐scale architecture of the deep critical zone revealed by seismic imaging. Geophysical Research Letters, 49(13), e2022GL098433.
    [Google Scholar]
  44. Pierret, M., Stille, P., Prunier, J., Viville, D. & Chabaux, F. (2014) Chemical and U–Sr isotopic variations in stream and source waters of the Strengbach watershed (Vosges mountains, France). Hydrology and Earth System Sciences, 18(10), 3969–3985.
    [Google Scholar]
  45. Pierret, M.C., Cotel, S., Ackerer, P., Beaulieu, E., Benarioumlil, S., Boucher, M. et al. (2018) The Strengbach catchment: a multidisciplinary environmental sentry for 30 years. Vadose Zone Journal, 17(1), 1–17.
    [Google Scholar]
  46. Pourcelot, L., Stille, P., Aubert, D., Solovitch‐Vella, N. & Gauthier‐Lafaye, F. (2008) Comparative behaviour of recently deposited radiostrontium and atmospheric common strontium in soils (Vosges mountains, France). Applied Geochemistry, 23(10), 2880–2887.
    [Google Scholar]
  47. Probst, A., Dambrine, E., Viville, D. & Fritz, B. (1990) Influence of acid atmospheric inputs on surface water chemistry and mineral fluxes in a declining spruce stand within a small granitic catchment (Vosges massif, France). Journal of Hydrology, 116(1–4), 101–124.
    [Google Scholar]
  48. Probst, A., Massabuau, J.C., Probst, J.L. & Fritz, B. (1992) Acidification des ruisseaux vosgiens. Les échos de l'hydrométrie et de l'hydrologie (5).
    [Google Scholar]
  49. Probst, J.‐L. (1992) Géochimie et hydrologie de l'érosion continentale. Mécanismes, bilan global actuel et fluctuations au cours des 500 derniers millions d'années (PhD thesis). University of Strasbourg.
  50. Ranchoux, C. (2020) Caractérisation géochimique et datation des circulations d'eaux profondes dans la zone critique: cas du bassin versant du Strengbach (Doctoral dissertation). Université de Strasbourg.
  51. Riebe, C.S., Hahm, W.J. & Brantley, S.L. (2017) Controls on deep critical zone architecture: a historical review and four testable hypotheses. Earth Surface Processes and Landforms, 42(1), 128–156.
    [Google Scholar]
  52. Rochlitz, R., Skibbe, N. & Günther, T. (2019) custEM: customizable finite‐element simulation of complex controlled‐source electromagnetic data. Geophysics, 84(2), F17–F33.
    [Google Scholar]
  53. Schmitt, A.D., Borrelli, N., Ertlen, D., Gangloff, S., Chabaux, F. & Osterrieth, M. (2018) Stable calcium isotope speciation and calcium oxalate production within beech tree (Fagus sylvatica L.) organs. Biogeochemistry, 137, 197–217. https://doi.org/10.1007/s10533‐017‐0411‐0
    [Google Scholar]
  54. Singer, B.S. (1992) Correction for distorsions of magnetotelluric fields: limits of validity of the static approach. Surveys in Geophysics, 13(4), 309–340.
    [Google Scholar]
  55. Spitzer, K. (2001) Magnetotelluric static shift and direct current sensitivity. Geophysical Journal International, 144(2), 289–299.
    [Google Scholar]
  56. Sternberg, B.K., Washburne, J.C. & Anderson, R.G. (1985) Investigation of MT static shift correction methods. In: SEG Technical Program. Society of Exploration Geophysicists, pp. 264–267.
  57. Sudo, H., Tanaka, T., Kobayashi, T., Kondo, T., Takahashi, T., Miyamoto, M. & Amagai, M. (2004) Permeability imaging in granitic rocks based on surface resistivity profiling. Exploration Geophysics, 35(1), 56–61.
    [Google Scholar]
  58. Swift, C.M. (1967) A magnetotelluric investigation of an electrical conductivity anomaly in the southwestern United States. Massachusetts Institute of Technology.
    [Google Scholar]
  59. Tandarich, J.P., Darmody, R.G., Follmer, L.R. & Johnson, D.L. (2002) Historical development of soil and weathering profile concepts from Europe to the United States of America. Soil Science Society of America Journal, 66(2), 335–346.
    [Google Scholar]
  60. Viville, D., Drogue, G., Probst, A., Ladouche, B., Idir, S., Probst, J.‐L. & Bariac, T. (2010) Hydrological behaviour of the granitic Strengbach catchment (Vosges massif, eastern France) during a flood event. IAHS Publication, 336, 77–83.
    [Google Scholar]
  61. Viville, D., Chabaux, F., Stille, P., Pierret, M.‐C. & Gangloff, S. (2012) Erosion and weathering fluxes in granitic basins: the example of the Strengbach catchment (Vosges massif, eastern France). Catena, 92, 122–129.
    [Google Scholar]
  62. Wannamaker, P.E. (1983) Three‐dimensional magnetotelluric interpretation (Doctoral dissertation). The University of Utah.
  63. Weill, S., Delay, F., Pan, Y. & Ackerer, P. (2017) A low‐dimensional subsurface model for saturated and unsaturated flow processes: ability to address heterogeneity. Computational Geosciences, 21(2), 301–314.
    [Google Scholar]
  64. White, A., Allen, C., Beams, S., Carr, P., Champion, D., Chappell, B., Wyborn, D. & Wyborn, L. (2001) Granite suites and supersuites of eastern Australia. Australian Journal of Earth Sciences, 48(4), 515–530.
    [Google Scholar]
  65. Word, D., Smith, H. & BostickJr, F. (1971) Crustal investigations by the magnetotelluric tensor impedance method. The Structure and Physical Properties of the Earth's Crust, 14, 145–167.
    [Google Scholar]
  66. Wyns, R., Baltassat, J.‐M., Lachassagne, P., Legchenko, A., Vairon, J. & Mathieu, F. (2004) Application of proton magnetic resonance soundings to groundwater reserve mapping in weathered basement rocks (Brittany, France). Bulletin de la Société Géologique de France, 175(1), 21–34.
    [Google Scholar]
  67. Zillmer, M., Kashtan, B.M., Doukoure, F. & Marthelot, J.M. (2021) Application of the differential effective medium theory to determine fluid saturation and crack density from measured P‐and S‐wave velocities. Geophysical Journal International, 226(1), 405–421.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12268
Loading
/content/journals/10.1002/nsg.12268
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error