1887
Volume 22, Issue 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Abstract

Induced polarization (IP) effect is widely used in the search of disseminated minerals all over the world. Spectral parameters computed from time‐domain IP data play a significant role in characterizing the sources, but mineral identification still remains a challenge. In this paper, the Levenberg–Marquardt method of inversion is adopted in estimating the spectral parameters from time‐domain IP data to identify the polarizable sources. The algorithm is tested on synthetic time‐domain IP data for its robustness to variable noise levels. Model sensitivity analyses on synthetic data were also studied with respect to acquisition time and each individual model parameter. Error analyses on extracted parameters indicated that these are well resolved and correlated if the relaxation time is within the range of acquisition time. The parameters remain poorly resolved/unresolved for smaller values of chargeability and frequency dependence. The algorithm has also been tested over known case histories of time‐domain IP data and compared the estimated spectral parameters with those of published results. The inferences drawn from computed spectral parameters on field‐observed IP transients are in good correlation with other data sets and borehole information. The methodology has successfully shown its usefulness in identifying large polarizable sources occurring at shallow levels from time‐domain IP data.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12276
2024-01-17
2024-10-09
Loading full text...

Full text loading...

References

  1. Agarwal, M., Birua, S.N.S., Garai, S.K., Porwal, N., Adhikari, Y. & Mandal, N. (2016) Western Singhbhum Shear Zone Investigation [Unpublished annual report of FSP 2015–16]. Jamshedpur: Atomic Minerals Directorate for Exploration and Research, Eastern Region.
  2. Auken, E., Christiansen, A.V., Jacobsen, B.H., Foged, N. & Sorensen, K.I. (2005) Piecewise 1D laterally constrained inversion of resistivity data. Geophysical Prospecting, 53, 497–506.
    [Google Scholar]
  3. Binley, A., Slater, L.D., Fukes, M. & Cassiani, G. (2005) Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resource Research, 41(W12417), 1–13.
    [Google Scholar]
  4. Borner, F.D., Schopper, W. & Weller, A. (1996) Evaluation of transport and storage properties in the soils and groundwater zone from induced polarization measurements. Geophysical Prospecting, 44(4), 583–601.
    [Google Scholar]
  5. Cole, K.S. & Cole, R.H. (1941) Dispersion and absorption in dielectrics. Journal of Chemical Physics, 9, 341.
    [Google Scholar]
  6. Dalhin, T. & Zhou, B. (2006) Multiple‐gradient array measurements for multichannel 2D resistivity imaging. Near Surface Geophysics, 4, 113–123.
    [Google Scholar]
  7. Debye, P. (1929) Polar molecules. New York: Chemical Catalog Co., Inc.
    [Google Scholar]
  8. Dunn, J.A. & Dey, A.K. (1942) The geology and petrology of eastern Singhbhum and surrounding areas. Memoir Geological Society of India, 69, 360–362. 426–427.
    [Google Scholar]
  9. Farquharson, C.G. & Oldenburg, D.W. (1998) Non‐linear inversion using general measures of data misfit and model structure. Geophysical Journal International, 134, 213–227.
    [Google Scholar]
  10. Fiandaca, G., Auken, E., Christiansen, A.V. & Gazoty, A. (2012) Time‐domain‐induced polarization: full‐decay forward modelling and 1D laterally constrained inversion of Cole‐Cole parameters. Geophysics, 77(3), E213–E225.
    [Google Scholar]
  11. Fiandaca, G., Doetsch, J., Vignoli, G. & Auken, E. (2015) Generalized focusing of time‐lapse changes with applications to direct current and time‐domain induced polarization inversions. Geophysical Journal International, 203, 1101–1112.
    [Google Scholar]
  12. Florsch, N., Camerlynck, C. & Revil, A. (2012) Direct estimation of the distribution of relaxation times from induced‐polarization spectra using a Fourier transform analysis. Near Surface Geophysics, 10, 517–531.
    [Google Scholar]
  13. Florsch, N., Llubes, M. & Téreygeol, F. (2012) Induced polarization 3D tomography of an archaeological direct reduction slag heap. Near Surface Geophysics, 10, 567–574.
    [Google Scholar]
  14. Florsch, N., Llubes, M., Téreygeol, F., Ghorbani, A. & Roblet, P. (2011) Quantification of slag heap volumes and masses through the use of induced polarization: application to the Castel‐Minier site. Journal of Archaeological Science, 38, 438–451.
    [Google Scholar]
  15. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E. & Christiansen, A.V. (2012a) Mapping of landfills using time‐domain spectral induced polarization data: the Eskelund case study. Near Surface Geophysics, 10, 575–586.
    [Google Scholar]
  16. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., Christiansen, A.V. & Pedersen, J.K. (2012b) Application of time domain induced polarization to the mapping of lithotypes in landfill site. Hydrology and Earth System Sciences, 16, 1793–1804.
    [Google Scholar]
  17. Ghorbani, A., Camerlynck, C., Florsch, N., Cosenza, P. & Revil, A. (2007) Bayesian inference of the Cole‐Cole parameters from time‐ and frequency‐domain induced polarization. Geophysical Prospecting, 55, 589–605.
    [Google Scholar]
  18. Greenhalgh, S.A., Bing, Z. & Green, A. (2006) Solutions, algorithms and inter‐relations for local minimization search geophysical inversion. Journal of Geophysics and Engineering, 3(2), 101–113.
    [Google Scholar]
  19. Grayver, A.V. & Kuvshinov, A.V. (2016) Exploring equivalence domain in nonlinear problems using Covariance Matrix Adaption Evolution Strategy (CMAES) and random sampling. Geophysical Journal International, 205, 971–987.
    [Google Scholar]
  20. Guptasarma, D. (1982) Computation of time domain response of polarizable ground. Geophysics, 47(11), 1574–1576.
    [Google Scholar]
  21. Guptasarma, D. (1984) True and apparent spectra of buried polarizable targets. Geophysics, 49, 171–176.
    [Google Scholar]
  22. Gurin, G., Tarasov, A., Ilying, Y. & Titov, K. (2013) Time domain spectral induced polarization of disseminated electronic conductors: laboratory data analysis through the Debye decomposition approach. Journal of Applied Geophysics, 200, 44–53.
    [Google Scholar]
  23. Gurin, G., Titov, K., Ilying, Y. & Tarasov, A. (2015) Induced polarization of disseminated electronically conductive minerals: a semi‐empirical model. Geophysical Journal International, 200, 1555–1565.
    [Google Scholar]
  24. Gurin, G.V., Tarasov, A.V., Il'in, Y.T. & Titov, K.V. (2017) Transient characteristic of induced polarization in inhomogeneous media (from results of 2D numerical simulation). Russian Geology and Geophysics, 58, 624–634.
    [Google Scholar]
  25. Johnson, I.M. (1984) Spectral induced polarization parameters as determined through time‐domain measurements. Geophysics, 49(11), 1993–2003.
    [Google Scholar]
  26. Johansson, S., Sparrenbom, C., Fiandaca, G., Lindskog, A., Olsson, P.‐I., Dalhin, T. & Rosqvist, H. (2016) Investigations of cretaceous limestone with spectral induced polarization and scanning electron microscopy. Geophysical Journal International, 208(2), 954–972.
    [Google Scholar]
  27. Johansson, S., Lindskog, A., Fiandaca, G. & Dalhin, T. (2019) Spectral induced polarization of limestone: time domain field data, frequency domain laboratory data and physiochemical rock properties. Geophysical Journal International, 220, ggz504.
    [Google Scholar]
  28. Kemna, A. (2000) Tomographic inversion of complex resistivity—theory and application. Osnabruck, Germany: Der Andere Verlag.
    [Google Scholar]
  29. Kim, J.‐H., Supper, R., Tsourlos, P. & Yi, M.‐J. (2013) Four‐dimensional inversion of resistivity monitoring data through Lp norm minimizations. Geophysical Journal International, 195, 1640–1656.
    [Google Scholar]
  30. Kruschwitz, S., Binley, A., Lesmes, D. & Elshenawy, A. (2010) Textural controls on low frequency electrical spectra of porous media. Geophysics, 75(4), WA113–WA123.
    [Google Scholar]
  31. Lee, T. (1981) Short Note on ‘The Cole‐Cole model in time domain induced polarization’. Geophysics, 46(6), 932–933.
    [Google Scholar]
  32. Lesmes, D., Sturrock, J. & Frye, K. (2000) A physiochemical interpretation of the Cole‐Cole dielectric model. In: Powers, M.H. et al. (Eds.) Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems. Wheat Ridge, CO, Environmental and Engineering Geophysical Society. pp. 533–544.
  33. Luo, B.Y. & Zhang, G. (1998) Theory and application of spectral induced polarization. Houston, TX: Society of Exploration Geophysicists.
    [Google Scholar]
  34. Madsen, L.M., Fiandaca, G., Auken, E. & Christiansen, A.V. (2017) Time‐domain induced polarization – an analysis of Cole‐Cole parameter resolution and correlation using Markov Chain Monte Carlo inversion. Geophysical Journal International, 211, 1341–1353.
    [Google Scholar]
  35. Madsen, L.M., Fiandaca, G., Christiansen, A.V. & Auken, E. (2018) Resolution of well‐known resistivity equivalences by inclusion of time‐domain induced polarization data. Geophysics, 83(1), E47–E54.
    [Google Scholar]
  36. Marquardt, D.W. (1963) An algorithm for least‐squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2), 431–441.
    [Google Scholar]
  37. Mishra, P., Krishnamurthi, R., Bisht, B.S. & Sinha, D.K. (2022) Mineralogical studies of metasomatized host rocks of Jahaz uranium prospect, North Delhi Fold Belt, Rajasthan. Journal Geological Society of India, 98, 1068–1073.
    [Google Scholar]
  38. Mao, D., Revil, A. & Hinton, J. (2016) Induced polarization response of porous media with metallic particles‐Part 4: detection of metallic and non‐metallic targets in time domain induced polarization tomography. Geophysics, 81(4), D359–D375.
    [Google Scholar]
  39. Major, J. & Sillic, J. (1981) Restrictions on the use of Cole‐Cole dispersion models in complex resistivity interpretation. Geophysics, 46(6), 916–931.
    [Google Scholar]
  40. Meju, M.A. (1959) Geophysical data analysis: understanding inverse problem theory and practice, vol. 6. Houston, TX: Society of Exploration Geophysicists.
    [Google Scholar]
  41. Oldenburg, D.W., Li, Y. & Ellis, R.G. (1997) Inversion of geophysical data over a copper gold porphyry deposit: a case history for Mt. Milligan. Geophysics, 62(5), 1419–1431.
    [Google Scholar]
  42. Olsson, P.‐I., Fiandaca, G., Larsen, J.J., Dalhin, T. & Auken, E. (2016) Doubling the spectrum of time‐domain induced polarization by harmonic de‐noising, drift correction, spike removal, tapered gating and data uncertainty estimation. Geophysical Journal International, 207(2), 774–784.
    [Google Scholar]
  43. Padhi, A.K. & Jain, A.K. (2014) [Unpublished monthly report of month of February, 2014]. Jaipur: Atomic Mineral Directorate for Exploration and Research, Western Region.
  44. Padhi, A.K., Vijaya Kumar, S., Jain, A.K., Girdhar, G.V., Dash, J.K., Bhatt, A.K., Purohit, R.K. & Rai, A.K. (2015) Integration of geological and geophysical data on base metal occurrences near Jahaz Uranium deposit, Jhunjhunu district, Rajasthan. In: 37th Annual Convention and Seminar and Exhibition on Exploration Geophysics, AEG, 15–17th Oct., 2015, Jaipur, India.
  45. Pelton, W.H., Ward, S.H., Hallof, P.G., Sill, W.R. & Nelson, P.H. (1978) Mineral discrimination and removal of inductive coupling with multi‐frequency IP. Geophysics, 43, 588–609.
    [Google Scholar]
  46. Qi, Y., Ahmed, A.S., Revil, A., Ghorbani, A., Abdulsamad, F., Florsch, N. & Bonnenfant, J. (2018) Induced polarization response of porous media with metallic particles‐Part 7: detection and quantification of buried slag heaps. Geophysics, 83(5), E277–E291.
    [Google Scholar]
  47. Revil, A. (2013) On charge accumulation in heterogeneous porous materials under the influence of an electrical field. Geophysics, 78(4), D271–D291.
    [Google Scholar]
  48. Revil, A., Abdel Aal, G.Z., Atekwana, E.A., Mao, D. & Florsch, N. (2015) Induced polarization response of porous media with metallic particles‐Part 2: comparison with a broad database of experimental data. Geophysics, 80(5), D539–D552.
    [Google Scholar]
  49. Revil, A., Florsch, N. & Mao, D. (2015) Induced polarization response of porous media with metallic particles‐Part 1: a theory for disseminated semiconductors. Geophysics, 80(5), D525–D538.
    [Google Scholar]
  50. Revil, A. & Florsch, N. (2010) Determination of permeability from spectral induced polarization in granular media. Geophysical Journal International, 181, 1480–1498.
    [Google Scholar]
  51. Revil, A., Le Breton, M., Niu, Q., Wallin, E., Haskins, E. & Thomas, D.M. (2017) Induced polarization of volcanic rocks. 2. Influenceof pore size and permeability. Geophysical Journal International, 208, 814–825. https://doi.org/10.1093/gji/ggw382
    [Google Scholar]
  52. Sarvanan, B., Agarwal, M., Patnaik, J.K., Birua, S.N.S., Gupta, S., Garai, S.K., Kushwaha, A.P., Pachamuthu, J., Rakesh, S., Pant, S. & Akhila, V.R. (2014) Singhbhum shear zone investigation, brief annual report, field‐season 2013–14 [Unpublished report]. Hyderabad: Atomic Mineral Directorate for Exploration and Research.
  53. Scales, J.A. & Smith, M.L. (1994) Introductory geophysical inverse theory. Golden, CO: Samizdat.
    [Google Scholar]
  54. Seigel, H.O. (1959) Mathematical formulation and type curves for induced polarization. Geophysics, 24(3), 547–565.
    [Google Scholar]
  55. Seigel, H.O., Vanhala, H. & Sheard, S.N. (1997) Some case histories of source discrimination using time‐domain spectral IP. Geophysics, 62(5), 1394–1408.
    [Google Scholar]
  56. Sharma, A.K. (2000) Exploration for base metals in Manaksas block, South Khetri Belt, Jhunjhunu district, Rajasthan. Rec. Geological Survey of India, 133(7), 11.
    [Google Scholar]
  57. Sharma, A.K. & Bhoopati, D. (2006) Exploration for base metal in Adwana‐Jahaz block, south Khetri belt, Jhunjhunu district, Rajasthan [(Progress Report for F.S. 2003–2004). Unpublished Report, Geol. Sur. of Ind., F.S. 2003–2004]. Geological Survey of India. http://www.portal.gsi.gov.in/gsiDoc/fspReports/WRO/2000_2005/WRO_24128_2003_2004_REPORT_1.pdf [Accessed 30th June 2018]
  58. Sharma, A.K. & Sahu, H.C. (2006) Exploration for base metal in Aawana‐Jahaz block, south Khetri belt, Jhunjhunu district, Rajasthan [(Progress Report for F.S. 2001–2002). Unpublished Report, Geol. Surv. Ind., F.S. 2001–2002]. Geological Survey of India. http://www.portal.gsi.gov.in/gsiDoc/fspReports/WRO/2000_2005/WRO_24116_2001_2002_REPORT_1.pdf [Accessed 30th June 2018]
  59. Slater, L., Ntarlagiannis, D. & Wishart, D. (2006) On the relationship between induced polarization and surface area in metal‐sand and clay‐sand mixtures. Geophysics, 71(2), A1–A5.
    [Google Scholar]
  60. Soininen, H. (1984a) Short Note on ‘Inapplicability of pulse train time‐domain measurements to spectral induced polarization’. Geophysics, 49(6), 826–827.
    [Google Scholar]
  61. Soininen, H. (1984b) The behaviour of the apparent resistivity phase spectrum in the case of polarizable prism in an unpolarizable half‐space. Geophysics, 49(9), 1534–1540.
    [Google Scholar]
  62. Soininen, H. (1985) The behaviour of the apparent resistivity phase spectrum in the case of two polarizable media. Geophysics, 50(5), 810–819.
    [Google Scholar]
  63. Swift, C.M. (1973) The L/M parameter of time‐domain IP measurements‐A computational analysis. Geophysics, 38(1), 61–67.
    [Google Scholar]
  64. Tarantola, A. & Valette, B. (1982) Generalized nonlinear inverse problems solved using least square criteria. Reviews of Geophysics and Space Physics, 20, 219–232.
    [Google Scholar]
  65. Tarasov, A. & Titov, K. (2013) On the use of the Cole‐Cole equations in spectral induced polarization. Geophysical Journal International, 195, 352–356.
    [Google Scholar]
  66. Titov, K., Tarasov, A., Ilyin, Y., Seleznev, N. & Boyd, A. (2010) Relationship between induced polarization relaxation time and hydraulic properties of sandstone. Geophysical Journal International, 180, 1095–1106.
    [Google Scholar]
  67. Tombs, J.M.C. (1981) The feasibility of making spectral IP measurement in time domain. Geoexploration, 19, 91–102.
    [Google Scholar]
  68. Tong, M., Li, L., Wang, W. & Jiang, Y. (2006a) A time‐domain induced‐polarization method for estimating permeability in shaly sand reservoir. Geophysical Prospecting, 54, 623–631.
    [Google Scholar]
  69. Tong, M., Li, L., Wang, W. & Jiang, Y. (2006b) Determining capillary pressure curve, pore size distribution and permeability from induced polarization of shaly sand. Geophysics, 71, 33–40.
    [Google Scholar]
  70. Vanhala, H. & Peltoniemi, M. (1992) Spectral IP studies of Finnish ore prospects. Geophysics, 57, 1545–1555.
    [Google Scholar]
  71. Voglesang, D. (1981) Relations of IP decay curve statistics and geology. Geophysical Prospecting, 29, 288–297.
    [Google Scholar]
  72. Wong, J. (1979) An electrochemical model of induced‐polarization phenomenon in disseminated sulphide ores. Geophysics, 44, 1245–1265.
    [Google Scholar]
  73. Yuval & Oldenburg, D.W. (1997) Computation of Cole‐Cole parameters from IP data. Geophysics, 62(2), 436–448.
    [Google Scholar]
  74. Zhdanov, M.S. (2008) Generalized effective‐medium theory of induced polarization. Geophysics, 73(5), F197–F211.
    [Google Scholar]
  75. Zorin, N. (2015) Spectral induced polarization of low and moderately polarizable buried objects. Geophysics, 80(5), E267–E276.
    [Google Scholar]
/content/journals/10.1002/nsg.12276
Loading
/content/journals/10.1002/nsg.12276
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): base metals; induced polarization; mineral and inversion; spectral parameters

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error