1887
Volume 22, Issue 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604
PDF

Abstract

Abstract

Seismic interferometry (SI) retrieves the Green function between two receiver locations using their recordings from a boundary of sources. When using sources and receivers only at the surface, the virtual‐source gathers retrieved by SI contain pseudo‐physical reflections as well as ghost (non‐physical) reflections. These ghost reflections are the results of the cross‐correlation or auto‐correlation (AC) of primary reflections from two different depth levels, and they contain information about the seismic properties of specific layers in the subsurface. We investigated the application of ghost reflections for layer‐specific characterization of the shallow subsurface using SI by AC. First, we showed the technique's potential using synthetic data for a subsurface model with a lateral change in velocity, a gradient in depth for velocity, a thickness change and a velocity change of the target layer. Then, we applied the technique to shallow subsurface field data. We also focused on improving the retrieval of ghost reflections by removing the free‐surface multiples and muting undesired events in active‐source gathers before applying SI. Our results demonstrate that the ghost reflections can be used advantageously to characterize the layer that causes them to appear in the results of SI. Consequently, they can also provide valuable information for imaging and monitoring shallow subsurface structures.

Loading

Article metrics loading...

/content/journals/10.1002/nsg.12275
2024-01-17
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/nsg/22/1/nsg12275.html?itemId=/content/journals/10.1002/nsg.12275&mimeType=html&fmt=ahah

References

  1. Boullenger, B. & Draganov, D. (2016) Interferometric identification of surface‐related multiples. Geophysics, 81(6), Q41–Q52. https://doi.org/10.1190/GEO2015‐0450.1
    [Google Scholar]
  2. Brouwer, J., Ghose, R., Helbig, K., & Nijhof, V. (1997). The improvement of geotechnical subsurface models through the application of S‐wave reflection seismic exploration. 3rd EEGS Meeting. https://doi.org/10.3997/2214‐4609.201407288
  3. Curtis, A., & Halliday, D. (2010). Directional balancing for seismic and general wavefield interferometry. GEOPHYSICS, 75(1), SA1–SA14. https://doi.org/10.1190/1.3298736
    [Google Scholar]
  4. Curtis, A., Nicolson, H., Halliday, D., Trampert, J. & Baptie, B. (2009) Virtual seismometers in the subsurface of the Earth from seismic interferometry. Nature Geoscience, 2(10), 700–704. https://doi.org/10.1038/ngeo615
    [Google Scholar]
  5. Draganov, D., Heller, K. & Ghose, R. (2012) Monitoring CO2 storage using ghost reflections retrieved from seismic interferometry. International Journal of Greenhouse Gas Control, 11, S35–S46. https://doi.org/10.1016/j.ijggc.2012.07.026
    [Google Scholar]
  6. Draganov, D., Ghose, R., Heller, K. & Ruigrok, E. (2013) Monitoring changes in velocity and Q using non‐physical arrivals in seismic interferometry. Geophysical Journal International, 192(2), 699–709. https://doi.org/10.1093/gji/ggs037
    [Google Scholar]
  7. Draganov, D., Ghose, R., Ruigrok, E., Thorbecke, J. & Wapenaar, K. (2010) Seismic interferometry, intrinsic losses and Q‐estimation. Geophysical Prospecting, 58(3), 361–373. https://doi.org/10.1111/j.1365‐2478.2009.00828.x
    [Google Scholar]
  8. Ghose, R., Brouwer, J. & Nijhof, V. (1996) A portable S‐wave vibrator for high‐resolution imaging of the shallow subsurface. In: 58th EAGE Conference and Exhibition, Amsterdam, The Netherlands, June 3–7, Utrecht: European Association of Geoscientists & Engineers, pp. 1–2.
    [Google Scholar]
  9. Ghose, R. & Goudswaard, J. (2004) Integrating S‐wave seismic‐reflection data and cone penetration‐test data using a multiangle multiscale approach. Geophysics, 69(2), 440–459. https://doi.org/10.1190/1.1707064
    [Google Scholar]
  10. Ghose, R. (2012) A microelectromechanical system digital 3C array seismic cone penetrometer. Geophysics, 77, WA99–WA107
    [Google Scholar]
  11. Halliday, D.F., Curtis, A., Robertsson, J.O. & Van Manen, D.‐J. (2007) Interferometric surface‐wave isolation and removal. Geophysics, 72(5), A69–A73. https://doi.org/10.1190/1.2761967
    [Google Scholar]
  12. Harmankaya, U., Kaslilar, A., Thorbecke, J., Wapenaar, K. & Draganov, D. (2013) Locating near‐surface scatterers using non‐physical scattered waves resulting from seismic interferometry. Journal of Applied Geophysics, 91, 66–81. https://doi.org/10.1016/j.jappgeo.2013.02.004
    [Google Scholar]
  13. King, S., & Curtis, A. (2012). Suppressing nonphysical reflections in Green's function estimates using source‐receiver interferometry. GEOPHYSICS, 77(1), Q15–Q25. https://doi.org/10.1190/geo2011‐0300.1
    [Google Scholar]
  14. King, S., Curtis, A. & Poole, T.L. (2011) Interferometric velocity analysis using physical and nonphysical energy. Geophysics, 76(1), SA35–SA49. https://doi.org/10.1190/1.3521291
    [Google Scholar]
  15. Löer, K., Meles, G.A., Curtis, A. & Vasconcelos, I. (2013) Diffracted and pseudo‐physical waves from spatially limited arrays using source‐receiver interferometry (SRI). Geophysical Journal International, 196(2), 1043–1059. https://doi.org/10.1093/gji/ggt435
    [Google Scholar]
  16. Ma, Xu, Kirichek, A., Heller, K. & Draganov, D. (2022) Estimating P‐ and S‐wave velocities in fluid mud using seismic interferometry. Frontiers in Earth Science, 10, 1–11. https://doi.org/10.3389/feart.2022.806721
    [Google Scholar]
  17. Ma, Xu, Kirichek, A., Shakeel, A., Heller, K. & Draganov, D. (2021) Laboratory seismic measurements for layer‐specific description of fluid mud and for linking seismic velocities to rheological properties. The Journal of the Acoustical Society of America, 149(6), 3862–3877. https://doi.org/10.1121/10.0005039
    [Google Scholar]
  18. Nichols, J., Mikesell, D. & Van Wijk, K. (2010) Application of the virtual refraction to near‐surface characterization at the Boise Hydrogeophysical Research Site. Geophysical Prospecting, 58(6), 1011–1021. https://doi.org/10.1111/j.1365‐2478.2010.00881.x
    [Google Scholar]
  19. Ruigrok, E.N., Wapenaar, K., Van Der Neut, J.R. & Draganov, D.S. (2009) A review of crosscorrelation and multidimensional deconvolution seismic interferometry for passive data. In: Passive Seismic Workshop: Case Studies and Applications for Field Development and ExplorationUtrecht: European Association of Geoscientists and Engineers, 1–7.
  20. Ruigrok, E., Campman, X., Draganov, D. & Wapenaar, K. (2010) High‐resolution lithospheric imaging with seismic interferometry. Geophysical Journal International, 183(1), 339‐357. https://doi.org/10.1111/j.1365‐246X.2010.04724.x17
    [Google Scholar]
  21. Shirmohammadi, F., Draganov, D., Balestrini, F. & Ghose, R. (2022) Application of seismic interferometry with non‐physical reflections using near‐surface seismic field data. In: NSG2022 28th European Meeting of Environmental and Engineering Geophysics. Utrecht, European Association of Geoscientists and Engineers. pp. 1–5. https://doi.org/10.3997/2214‐4609.202220075
  22. Snieder, R., Miyazawa, M., Slob, E., Vasconcelos, I. & Wapenaar, K. (2009) A comparison of strategies for seismic interferometry. Surveys in Geophysics, 30(4–5), 503–523. https://doi.org/10.1007/s10712‐009‐9069‐z
    [Google Scholar]
  23. Snieder, R., Wapenaar, K. & Larner, K. (2006) Spurious multiples in seismic interferometry of primaries. Geophysics, 71(4), SI111–SI124. https://doi.org/10.1190/1.2211507
    [Google Scholar]
  24. Thorbecke, J.W. & Draganov, D. (2011) Finite‐difference modelling experiments for seismic interferometry. Geophysics, 76(6), H1–H18. https://doi.org/10.1190/geo2010‐0039.1
    [Google Scholar]
  25. van Groenestijn, G.J. & Verschuur, D.J. (2009) Estimating primaries by sparse inversion and application to near‐offset data reconstruction. Geophysics, 74(3), A23–A28. https://doi.org/10.1190/1.3111115
    [Google Scholar]
  26. Verschuur, D.J., (1991) Surface‐related multiple elimination: an inversion approach [Ph.D. thesis]. Delft University of Technology. http://resolver.tudelft.nl/uuid:09df29e2‐9487‐4fe6‐87e0‐c2a9470933d7
  27. Wapenaar, K. & Fokkema, J. (2006) Green's function representations for seismic interferometry. Geophysics, 71(4), SI33–SI46. https://doi.org/10.1190/1.2213955
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1002/nsg.12275
Loading
/content/journals/10.1002/nsg.12275
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): imaging; reflection; seismic; S‐wave; velocity

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error