1887
Volume 68 Number 1
  • E-ISSN: 1365-2478
PDF

Abstract

ABSTRACT

The Kevitsa mafic‐ultramafic intrusion, located within the Central Lapland Greenstone Belt in northern Finland, hosts a large, disseminated Ni–Cu–PGE sulphide deposit. A three‐dimensional seismic reflection survey was conducted over the Kevitsa intrusion in 2010 primarily for open‐pit mine planning and for deep mineral exploration purposes. In the Kevitsa three‐dimensional seismic data, laterally continuous reflections are observed within a constrained region within the intrusion. In earlier studies, it has been suggested that this internal reflectivity mainly originates from contacts between the tops and more sulphide‐rich bottoms of smaller scale, internally differentiated magma layers that represent a spectrum of olivine pyroxenites. However, this interpretation is not unequivocally supported by the borehole data. In this study, data mining, namely the Self‐Organizing Map analysis, of extensive Kevitsa borehole data is used to investigate the possible causes for the observed internal reflectivity within the Kevitsa intrusion. Modelling of the effect of mineralization and alteration on the reflectivity properties of Kevitsa rock types, based on average modal compositions of the rock types, is presented to support the results of the Self‐Organizing Map analysis. Based on the results, we suggest that the seismic reflectivity observed within the Kevitsa intrusion can possibly be attributed to alteration, and may also be linked to the presence of sulphide minerals.

Loading

Article metrics loading...

/content/journals/10.1111/1365-2478.12907
2019-12-30
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/gpr/68/1/gpr12907.html?itemId=/content/journals/10.1111/1365-2478.12907&mimeType=html&fmt=ahah

References

  1. AbersG.A. and HackerB.R.2016. A MATLAB toolbox and Excel workbook for calculating the densities, seismic wave speeds, major element composition of minerals and host rocks at pressure and temperature. Geochemistry, Geophysics, Geosystems17, 616–624.
    [Google Scholar]
  2. BassJ.D.1995. Elasticity of minerals, glasses and melts. In: Mineral Physics and Crystallography: A Handbook of Physical Constants (ed. T.J.Ahrens), pp. 45–63. American Geophysical Union.
    [Google Scholar]
  3. BierleinF.P., FraserS.J., BrownW.M. and LeesT.2008. Advanced methodologies for the analysis of databases of mineral deposits and major faults. Australian Journal of Earth Sciences55, 79–99.
    [Google Scholar]
  4. BuskeS., BellefleurG. and MalehmirA.2015. Introduction to special issues on “hard rock seismic imaging”. Geophysical Prospecting63, 751–753.
    [Google Scholar]
  5. CottrellM. and LetrémyP.2005. Missing values: processing with the Kohonen algorithm. Applied Stochastic Models and Data Analysis (ASMDA 2005) Proceedings, Brest, France, May 2005, pp. 489–496.
  6. CracknellM.J., ReadingA.M. and McNeillA.W.2014. Mapping geology and volcanic‐hosted massive sulphide alteration in the Helley‐Mt Charter region, Tasmania, using Random Forests and Self‐Organizing Maps. Australian Journal of Earth Sciences61, 287–304.
    [Google Scholar]
  7. DaviesD.L. and BouldinD.W.1979. A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine IntelligencePAMI‐1, 224–227.
    [Google Scholar]
  8. EatonD., MilkereitB. and SalisburyM.2003. Seismic methods for deep mineral exploration: mature technologies adapted to new targets. The Leading Edge22, 580–585.
    [Google Scholar]
  9. FessantF. and MidenetS.2002. Self‐organising map for data imputation and correction in surveys. Neural Computing & Applications10, 300–310.
    [Google Scholar]
  10. FraserS. and DicksonB.L.2007. A new method for data integration and integrated data interpretation: self‐organizing maps. Proceedings of Exploration 07: 5th Decennial International Conference on Mineral Exploration, Toronto, Canada, September 2007, pp. 907–910.
  11. GregoryJ., JournetN., WhiteG. and LappalainenM.2011. Kevitsa Nickel Copper Project, Finland. Technical Report (NI 43–101) for the Mineral Resources and Reserves of the Kevitsa Project. First Quantum Minerals Ltd.
  12. HeinonenS., ImañaM., SnyderD.B., KukkonenI.T. and HeikkinenP.J.2012. Seismic reflection profiling of the Pyhäsalmi VHMS‐deposit: a complementary approach to the deep base metal exploration in Finland. Geophysics77, WC15–WC23.
    [Google Scholar]
  13. HorrocksT.A.2019. Integrated analysis of geological, geophysical, and geochemical data of the Kevitsa Ni‐Cu‐PGE deposit: machine learning approaches. PhD thesis, School of Earth Sciences, University of Western Australia, Australia.
  14. JunnoN., KoivistoE., KukkonenI., MalehmirA. and MontonenM.2019. Predicting missing seismic velocity values using self‐organizing maps to aid the interpretation of seismic reflection data from the Kevitsa Ni‐Cu‐PGE deposit in northern Finland. Minerals9, 529.
    [Google Scholar]
  15. KaskiS., KangasJ. and KohonenT.1998. Bibliography of Self‐Organizing Map (SOM) papers: 1981–1997. Neural Computing Surveys1, 1–176.
    [Google Scholar]
  16. KieuD.T., KepicA. and KitzigM.C.2018. Prediction of sonic velocities from other borehole data: An example from the Kevitsa mine site, northern Finland. Geophysical Prospecting66, 1667–1683.
    [Google Scholar]
  17. KloseC.D.2006. Self‐organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data. Computational Geosciences10, 265–277.
    [Google Scholar]
  18. KohonenT.1981. Automatic formation of topological maps of patterns in a self‐organizing system. Proceedings of the Second Scandinavian Conference on Image Analysis, Helsinki, Finland, June 15–17, 1981, pp. 214–220.
  19. KohonenT.2001. Self‐Organizing Maps. Springer, New York, NY.
    [Google Scholar]
  20. KohonenT., HynninenJ., KangasJ. and LaaksonenJ.1996. SOM_PAK: the self‐organizing map program package. Technical Report A31, Laboratory of Computer and Information Science, Helsinki University of Technology.
  21. KoivistoE., MalehmirA., HeikkinenP., HeinonenS. and KukkonenI.2012. 2D seismic reflection investigations at the Kevitsa Ni‐Cu‐PGE deposit, northern Finland. Geophysics77, WC149–WC162.
    [Google Scholar]
  22. KoivistoE., MalehmirA., HellqvistN., VoipioT. and WijnsC.2015. Building a 3D model of lithological contacts and near‐mine structures in the Kevitsa mining and exploration site, northern Finland. Geophysical Prospecting63, 754–773.
    [Google Scholar]
  23. KokkoS.2018. Mineral resources and mineral reserves, 2018. Boliden Summary Report.
  24. KukkonenI., LahtiI., HeikkinenP. and HIRE Working Group of the Geological Survey of Finland . 2009. HIRE Seismic Reflection Survey in the Kevitsa Ni‐PGE deposit, North Finland. Geological Survey of Finland Report Q23/2008/59.
  25. L'HeureuxE., MilkereitB. and VasudevanK.2009. Heterogeneity and seismic scattering in exploration environments. Tectonophysics472, 264–272.
    [Google Scholar]
  26. Le VaillantM., BarnesS.J., FiorentiniM.L., SantaguidaF. and TörmänenT.2016. Effects of hydrous alteration on the distribution of base metals and platinum group elements within the Kevitsa magmatic nickel sulphide deposit. Ore Geology Reviews72, 128–148.
    [Google Scholar]
  27. LeväniemiH., HulkkiH. and TiainenM.2016. SOM guided fuzzy logic prospectivity model for gold in the Häme Belt, southwestern Finland. Journal of African Earth Sciences128, 72–83.
    [Google Scholar]
  28. LindqvistT., SkyttäP., KoivistoE.A.‐L., HäkkinenT. and SomervuoriP.2017. Delineating the network of brittle structures with geotechnical, structural and reflection seismic data, Kevitsa open pit, northern Finland, GeoResJ13, 159–174.
    [Google Scholar]
  29. LuolavirtaK., HanskiE., MaierW. and SantaguidaF.2018a. Whole‐rock and mineral compositional constraints on the magmatic evolution of the Ni‐Cu‐(PGE) sulfide ore‐bearing Kevitsa intrusion, northern Finland. Lithos269–299, 37–53.
    [Google Scholar]
  30. LuolavirtaK., HanskiE., MaierW., LahayeY., O'BrienH. and SantaguidaF.2018b. In situ strontium and sulfur isotope investigation of the Ni‐Cu‐(PGE) sulfide ore‐bearing Kevitsa intrusion, northern Finland. Mineralium Deposita53, 1019–1038.
    [Google Scholar]
  31. LuolavirtaK., HanskiE., MaierW. and SantaguidaF.2018c. Characterization and origin of dunitic rocks in the Ni‐Cu sulphide‐bearing Kevitsa intrusion: whole‐rock and mineral compositional constrains. Bulletin of the Geological Society of Finland90, 5–32.
    [Google Scholar]
  32. MalehmirA., DurrheimR., BellefleurG., UrosevicM., JuhlinC., WhiteD.J.et al. 2012a. Seismic methods in mineral exploration and mine planning: a general overview of past and present case histories and a look into the future. Geophysics77, WC173–WC190.
    [Google Scholar]
  33. MalehmirA., JuhlinC., WijnsC., UrosevicM., ValastiP. and KoivistoE.2012b. 3D seismic reflection imaging for open‐pit mine planning and deep exploration in the Kevitsa Ni‐Cu‐ PGE deposit, northern Finland. Geophysics77, WC95–WC108.
    [Google Scholar]
  34. MalehmirA., KoivistoE., ManziM., CheraghiS., DurrheimR.J., BellefleurG.et al. 2014. A review of seismic reflection investigations in three major metallogenic regions: the Kevitsa Ni‐Cu‐PGE (Finland), Witwatersrand goldfields (South Africa), and the Bathurst Mining Camp (Canada). Ore Geology Reviews56, 423–441.
    [Google Scholar]
  35. MalehmirA., BellefleurG., KoivistoE. and JuhlinC.2017. Pros and cons of 2D vs 3D seismic mineral exploration surveys. First Break35, 49–55.
    [Google Scholar]
  36. MalehmirA., TryggvasonA., WijnsC., KoivistoE., LindqvistT., SkyttäP.et al. 2018. Why 3D seismic data are an asset for both exploration and mine planning? Velocity tomography of weakness zones in the Kevitsa Ni‐Cu‐PGE mine, northern Finland. Geophysics83, B33–B46.
    [Google Scholar]
  37. MilkereitB., EatonD.W., WuJ., PerronG., SalisburyM.H., BerrerE.et al. 1996. Seismic imaging of massive sulphide deposits: Part II. Seismic reflection profiling. Economic Geology91, 829–834.
    [Google Scholar]
  38. MutanenT.1997. Geology and Ore Petrology of the Akanvaara and Koitelainen Mafic‐Layered Intrusions and the Keivitsa‐Satovaara Layered Complex, northern Finland. Geologian Tutkimuskeskus, Espoo.
    [Google Scholar]
  39. MutanenT. and HuhmaH.2001. U‐Pb geochronology of the Koitelainen, Akanvaara and Keivitsa mafic layered intrusions and related rocks. In: Radiometric Age Determinations from Finnish Lapland and Their Bearing on the Timing of Precambrian Volcano‐Sedimentary Sequences (ed. M.Vaasjoki), pp. 229–246. Geological Survey of Finland.
    [Google Scholar]
  40. OjaM., KaskiS. and KohonenT.2003. Bibliography of self‐organizing map (SOM) papers: 1998–2001 addendum. Neural Computing Surveys3, 1–156.
    [Google Scholar]
  41. PennB.S.2005. Using self‐organizing maps to visualize high‐dimensional data. Computers & Geosciences31, 531–544.
    [Google Scholar]
  42. PölläM., HonkelaT. and KohonenT.2009. Bibliography of self‐organizing map (SOM) papers: 2002–2005 addendum. Technical Report TKK‐ICS‐R23, Helsinki University of Technology.
  43. SalisburyM., MilkereitB. and BleekerW.1996. Seismic imaging of massive sulphide deposits: part I. Rock properties. Economic Geology91, 821–828.
    [Google Scholar]
  44. SalisburyM., HarveyC.W. and MatthewsL.2003. The acoustic properties of ores and host rocks in hardrock terranes. In: Hardrock Seismic Exploration (eds D.Eaton, B.Milkereit and M.Salisbury), pp. 9–19. SEG.
    [Google Scholar]
  45. SantaguidaF., LuolavirtaK., LappalainenM., YlinenJ., VoipioT. and JonesS.2015. The Kevitsa Ni‐Cu‐PGE deposit in the Central Lapland Greenstone Belt in Finland. In: Mineral Deposits of Finland (eds W.D.Maier, R.Lahtinen and H.O'Brien), pp. 195–210. Elsevier.
    [Google Scholar]
  46. StandingJ., De LucaK., OuthwhaiteM., LappalainenM., WijnsC., JonesS. et al. 2009. Report and recommendations from the Kevitsa Campaign, Finland. Confidential Report to First Quantum Minerals Ltd. Jigsaw Geosciences Pty Ltd., West Perth, Australia.
  47. SteelM.A.2011. Petrophysical modelling using self‐organizing maps. Bachelor's thesis, Department of Exploration Geophysics, Curtin University of Technology, Australia.
  48. VesantoJ., HimbergJ., AlhoniemiE. and ParhankangasJ.2000. SOM Toolbox for Matlab 5. Technical Report A57, Laboratory of Computer and Information Science, Helsinki University of Technology.
  49. YangS.‐H., MaierW.D., HanskiE., LappalainenM., SantaguidaF. and MäättäS.2014. Origin of ultra‐nickeliferous olivine in the Kevitsa Ni‐Cu‐PGE‐mineralized intrusion, northern Finland. Contributions to Mineralogy and Petrology166, 81–95.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/1365-2478.12907
Loading
/content/journals/10.1111/1365-2478.12907
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): Borehole geophysics , Interpretation , Petrophysics and Seismics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error