1887
Volume 19, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The Ekofisk Field is a giant field which has been producing at a high level for more than forty years and, since 1987, this production has taken place with the support of sea-water injection. The Danian-aged chalk deposits of the Ekofisk Formation and the Maastrichtian Tor Formation form the main reservoir units in the Ekofisk Field. The Ekofisk Formation principally consists of porous resedimented chalks intercalated with relatively thin and lower porosity beds, called dense zones. A multi-scale study of dense zones, from scanning electron microscopy to wells and seismic impedance data, has allowed the characterization and mapping of these deposits. Five main dense zone lithotypes have been identified: (1) argillaceous chalk; (2) chalk with abundant flint nodules; (3) chalk beds cemented with silica/nano-quartz; (4) calcite-cemented chalk; and (5) stylolitized chalk. The different types of dense zones tend to cluster in certain stratigraphic intervals, such as the EE and EM reservoir units at the base and in the middle part of the Ekofisk Formation. Dense zones have different mechanical properties compared to porous chalks and, depending on the connectivity of their fracture networks, they can act as preferential conduits or baffles for the reservoir fluids. An increased understanding of the distribution, characteristics and geological factors at the origin of the dense zones is fundamental to better define the reservoir architecture and ultimately identify unswept zones for future infill drilling targets.

Supplementary material

Descriptions of analytical procedures, composition, poro-perm and well log values of dense zone samples is available at: www.geolsoc.org.uk/SUP18573.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2012-013
2013-02-01
2024-04-26
Loading full text...

Full text loading...

http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2012-013
Loading
/content/journals/10.1144/petgeo2012-013
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error