1887
Volume 23, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:
PDF

Abstract

Large-scale energy storage in the geological subsurface (e.g. by storing hydrogen gas) may help to mitigate effects of a fluctuating energy production arising from the extensive use of renewable energy sources. The applicability of hydrogen (H) storage in a porous sandstone formation is investigated by defining a usage scenario and a subsequent numerical simulation of a storage operation at an existing anticlinal structure in the North German Basin. A facies modelling approach is used to obtain 25 heterogeneous and realistic parameter sets. The storage operation consists of the initial filling with nitrogen used as cushion gas, the initial filling with H, and six withdrawal periods with successive refilling and shut-in periods. It is found that, on average, the storage can sustain a continuous power output of 245 MW for 1 week when using five storage wells, while peak performance can be as high as 363 MW, indicating that the storage is mainly limited by the achievable extraction rates. The median of the maximum pressure perturbation caused by this storage is around 3 bars and can be observed at a distance of 5 km from the wells.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-050
2017-03-09
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/petgeo/23/3/petgeo2016-050.html?itemId=/content/journals/10.1144/petgeo2016-050&mimeType=html&fmt=ahah

References

  1. Bachu, S. & Bennion, B.
    2008. Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems. Environmental Geology, 54, 1707–1722, https://doi.org/10.1007/s00254-007-0946-9
    [Google Scholar]
  2. Baldschuhn, R., Binot, F., Fleig, S. & Kockel, F.
    2001. Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor [Tectonic Atlas of Northwest Germany and the German North Sea Sector]. Geologisches Jahrbuch, A153.
    [Google Scholar]
  3. Battermann, K.
    1989. Das Rhät (oberer Keuper) im östlichen Niedersachsen [The Rhaetian (upper Keuper) in eastern Lower Saxony]. Zeitschrift der Deutschen Geologischen Gesellschaft, 140, 101–116.
    [Google Scholar]
  4. Battino, R.
    1982. Nitrogen and Air. IUPAC Solubility Data Series 10. Pergamon Press, Oxford.
    [Google Scholar]
  5. Bauer, S., Class, H. et al.
    2012. Modeling, parameterization and evaluation of monitoring methods for CO2 storage in deep saline formations: the CO2–MoPa project. Environmental Earth Sciences, 67, 351–367, https://doi.org/10.1007/s12665-012-1707-y
    [Google Scholar]
  6. Bauer, S., Beyer, C. et al.
    2013. Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environmental Earth Sciences, 70, 3935–3943, https://doi.org/10.1007/s12665-013-2883-0
    [Google Scholar]
  7. Benisch, K. & Bauer, S.
    2013. Short- and long-term regional pressure build-up during CO2 injection and its application for site monitoring. International Journal of Greenhouse Gas Control, 19, 220–233, https://doi.org/10.1016/j.ijggc.2013.09.002
    [Google Scholar]
  8. Benisch, K., Köhn, D., al HagreyS, Rabbel, W. & Bauer, S.
    2014. A combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site. Environmental Earth Sciences, 73, 3077–3094, https://doi.org/10.1007/s12665-014-3603-0
    [Google Scholar]
  9. Bennion, D.B., Thomas, F.B., Ma, T. & Imer, D.
    2000. Detailed protocol for the screening and selection of gas storage reservoirs. Paper SPE 59738 presented at theSPE/CERI Gas Technology Symposium, 3–5 April 2000, Calgary, Alberta, Canada.
    [Google Scholar]
  10. BMWi
    . 2015. The Energy of the Future – Fourth ‘Energy Transition’ Monitoring Report. Federal Ministry for Economic Affairs and Energy, Berlin, Germany.
    [Google Scholar]
  11. Brooks, R.H. & Corey, A.T.
    1964. Hydraulic Properties of Porous Media. Hydrology Papers. Colorado State University, Fort Collins, CO, USA.
    [Google Scholar]
  12. Büchi, F.N., Hofer, M. et al.
    2014. Towards re-electrification of hydrogen obtained from the power-to-gas process by highly efficient H2/O2 polymer electrolyte fuel cells. Royal Society of Chemistry Advances, 4, 56  319–56  146, https://doi.org/10.1039/c4ra11868e
    [Google Scholar]
  13. Burton, M., Kumar, N. & Bryant, S.L.
    2009. CO2 injectivity into brine aquifers: why relative permeability matters as much as absolute permeability. Energy Procedia, 1, 3091–3098, https://doi.org/10.1016/j.egypro.2009.02.089
    [Google Scholar]
  14. Carden, P.O. & Paterson, L.
    1979. Physical, chemical and energy aspects of underground hydrogen storage. International Journal of Hydrogen Energy, 4, 559–569, https://doi.org/10.1016/0360-3199(79)90083-1
    [Google Scholar]
  15. Crotogino, F., Donadei, S., Bünger, U. & Landinger, H.
    2010. Large-scale hydrogen underground storage for securing future energy supplies. In: Stolten, D. & GrubeT. (eds) Proceedings of the 18th World Hydrogen Energy Conference 2010 – WHEC 2010. Schriften des Forschungszentrums Jülich, 78-4, 37–45.
    [Google Scholar]
  16. Doornenbal, J.C. & Stevenson, A.G.
    (eds). 2010. Petroleum Geological Atlas of the Southern Permian Basin Area. EAGE Publications, Houten, The Netherlands.
    [Google Scholar]
  17. DSK
    . 2005. Stratigraphie von Deutschland IV – Keuper [Stratigraphy of Germany IV – Keuper]. Deutsche Stratigraphische Kommission. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.
    [Google Scholar]
  18. Dussaud, M.
    1989. New techniques in underground storage of natural gas. In: Tek, M.R. (ed.) Underground Storage of Natural Gas. Kluwer Academic Publisher, Dordrecht, The Netherlands, 371–383.
    [Google Scholar]
  19. Evans, D.J. & West, J.M.
    2008. An Appraisal of Underground Gas Storage Technologies and Incidents for the Development of Risk Assessment Methodology. Research Report RR605. British Geological Survey, Keyworth, Nottingham, UK.
    [Google Scholar]
  20. Fahrion, H. & Betz, D.
    1991. Geologischer Rahmen, Fund- und Fördergeschichte [Geologic framework, discovery and exploration history]. In: Achilles, H. & Ahrendt, H. (eds) Das Gasfeld Thönse in Niedersachsen, ein Unikat [The Gasfield Thönse in Lower Saxony, One of a Kind]. Schweizerbart Science, Stuttgart, Germany, 7–10.
    [Google Scholar]
  21. Feldmann, F., Hagemann, B., Ganzer, L. & Panfilov, M.
    2016. Numerical simulation of hydrodynamic and gas mixing processes in underground hydrogen storages. Environmental Earth Sciences, 75, 1165, https://doi.org/10.1007/s12665-016-5948-z
    [Google Scholar]
  22. Foh, S., Novin, M., Rockar, E. & Randolph, P.
    1979. Underground Hydrogen Storage. Report BNL 57275.Institute of Gas Technology, Chicago, IL, USA.
    [Google Scholar]
  23. Forsberg, C.W.
    2009. Sustainability by combining nuclear, fossil, and renewable energy sources. Progress in Nuclear Energy, 51, 192–200, https://doi.org/10.1016/j.pnucene.2008.04.002
    [Google Scholar]
  24. Gahleitner, G.
    2013. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy, 38, 2039–2061, https://doi.org/10.1016/j.ijhydene.2012.12.010
    [Google Scholar]
  25. Gasem, K.A.M., Gao, W., Pan, Z. & Robinson, R.L.Jr.
    2001. A modified temperature dependence for the Peng–Robinson equation of state. Fluid Phase Equilibria, 181, 113–125, https://doi.org/10.1016/S0378-3812(01)00488-5
    [Google Scholar]
  26. Gaupp, R.
    1991. Zur Fazies und Diagenese des Mittelrhät-Hauptsandsteins im Gasfeld Thönse. In: Achilles, H. & Ahrendt, H. (eds) Das Gasfeld Thönse in Niedersachsen, ein Unikat [The Gasfield Thönse in Lower Saxony, One of a Kind]. Schweizerbart Science, Stuttgart, Germany, 35–55.
    [Google Scholar]
  27. Gregory, D.P. & Pangborn, J.B.
    1976. Hydrogen energy. Annual Review of Energy, 1, 279–310, https://doi.org/10.1146/annurev.eg.01.110176.001431
    [Google Scholar]
  28. Helmig, R.
    1997. Multiphase Flow and Transport Processes in the Subsurface. Springer, Berlin, Germany.
    [Google Scholar]
  29. Hese, F.
    2011. Geological 3D models of the subsurface of Schleswig-Holstein – a contribution to studies focused on the utilisation potential of deep saline aquifers. Zeitschrift der Deutschen Gesellschaft frü Geowissenschaften, 162, 389–404, https://doi.org/10.1127/1860-1804/2011/0162-0389
    [Google Scholar]
  30. 2012. 3D Modellierung und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein [3D modelling and visualisation of subsurface structures for the use of the subsurface space of Schleswig-Holstein]. PhD dissertation, University of Kiel, Germany.
    [Google Scholar]
  31. Hildenbrand, A., Schlömer, S. & Krooss, B.M.
    2002. Gas breakthrough experiments of fine-grained sedimentary rocks. Geofluids, 2, 3–23, https://doi.org/10.1046/j.1468-8123.2002.00031.x
    [Google Scholar]
  32. Hildenbrand, A., Schlömer, S., Krooss, B.M. & Littke, R.
    2004. Gas breakthrough experiments on pelitic rocks: Comparative study with N2, CO2 and CH4 . Geofluids, 4, 61–81, https://doi.org/10.1111/j.1468-8123.2004.00073.x
    [Google Scholar]
  33. Kaye, G.W.C. & Laby, T.H.
    2016. Tables of Physical and Chemical Constants (16th edn). 3.5. Critical Constants and Second Virial Coefficients of Gases. Kaye & Laby Online, v1.0, http://www.kayelaby.npl.co.uk [last accessed 14 March 2016].
    [Google Scholar]
  34. Klaus, T., Vollmer, C., Werner, K., Lehmann, H. & Müschen, K.
    2010. Energy Target 2050: 100% Renewable Electricity Supply. Federal Environment Agency, Dessau-Rosslau, Germany.
    [Google Scholar]
  35. Laille, J., Molinard, J.R. & Wents, A.
    1988. Inert gas injection as part of the cushion of the underground storage of Saint-Clair-Sur-Epte, France. Paper SPE 17740 presented at theSPE Gas Technology Symposium, 13–15 June 1988, Dallas, Texas, USA, https://doi.org/10.2118/17740-MS
    [Google Scholar]
  36. Lee, M.C., Seo, S.B., Yoon, J., Kim, M. & Yoon, Y.
    2012. Experimental study on the effect of N2, CO2 and steam dilution on the combustion performance of H2 and CO synthetic gas in an industrial gas turbine. Fuel, 102, 431–438, https://doi.org/10.1016/j.fuel.2012.05.028
    [Google Scholar]
  37. Lemmon, E.W., McLinden, M.O. & Friend, D.G.
    2016. Thermophysical properties of fluid systems. In: Linstrom, P.J. & Mallard, W.G. (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg, MD, USA, http://webbook.nist.gov [last accessed 14 March 2016].
    [Google Scholar]
  38. Massoudi, R. & King, A.D.Jr
    . 1974. Effect of pressure on the surface tension of water. Adsorption of low molecular weight gases on water at 25°C. Journal of Physical Chemistry, 78, 2262–2266.
    [Google Scholar]
  39. MELUR
    . 2013. Energiebilanz Schleswig-Holstein 2011 [Energy Balance Schleswig-Holstein 2011]. Ministerium für Energiewende, Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein, Kiel, Germany.
    [Google Scholar]
  40. Mitiku, A.B. & Bauer, S.
    2013. Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environmental Earth Sciences, 70, 3661–3673, https://doi.org/10.1007/s12665-013-2580-z
    [Google Scholar]
  41. Morse, D.G.
    1994. Siliciclastic reservoir rocks. In: Magoon, L.B. & Dow, W.G. (eds) The Petroleum System – From Source to Trap. American Association of Petroleum Geologists, Memoirs, 60, 121–139.
    [Google Scholar]
  42. Ogden, J.M.
    1999. Prospects for building a hydrogen energy infrastructure. Annual Review of Environment and Resources, 24, 227–279, https://doi.org/10.1146/annurev.energy.24.1.227
    [Google Scholar]
  43. Oldenburg, C.
    2003. Carbon dioxide as cushion gas for natural gas storage. Energy & Fuels, 17, 240–246, https://doi.org/10.1021/ef020162b
    [Google Scholar]
  44. Oldenburg, C. & Pan, L.
    2013. Utilization of CO2 as cushion gas for porous media compressed air energy storage. Greenhouse Gases: Science and Technology, 3, 1–12, https://doi.org/10.1002/ghg.1332
    [Google Scholar]
  45. Oldenburg, C., Webb, S.W., Pruess, K. & Moridis, G.J.
    2004. Mixing of stably stratified gases in subsurface reservoirs: A comparison of diffusion models. Transport in Porous Media, 54, 323–334, https://doi.org/10.1023/B:TIPM.0000003748.74155.48
    [Google Scholar]
  46. Panfilov, M.
    2010. Underground storage of hydrogen: in situ self-organisation and methane generation. Transport in Porous Media, 85, 841–865, https://doi.org/10.1007/s11242-010-9595-7
    [Google Scholar]
  47. Paterson, L.
    1983. The implications of fingering in underground hydrogen storage. International Journal of Hydrogen Energy, 8, 53–59.
    [Google Scholar]
  48. Pfeiffer, W.T. & Bauer, S.
    2015. Subsurface porous media hydrogen storage – scenario development and simulation. Energy Procedia, 76, 565–572, https://doi.org/10.1016/j.egypro.2015.07.872
    [Google Scholar]
  49. Pfeiffer, W.T., al Hagrey, S., Köhn, D., Rabbel, W. & Bauer, S.
    2016. Porous media hydrogen storage at a synthetic, heterogeneous field site – Numerical simulation of storage operation and geophysical monitoring. Environmental Earth Sciences, 75, 1177, https://doi.org/10.1007/s12665-016-5958-x
    [Google Scholar]
  50. Reitenbach, V., Ganzer, L., Albrecht, D. & Hagemann, B.
    2015. Influence of added hydrogen on underground gas storage: a review of key issues. Environmental Earth Sciences, 73, 6927–6937, https://doi.org/10.1007/s12665-015-4176-2
    [Google Scholar]
  51. Schlumberger
    . 2014. ECLIPSE v2014.2 – Technical Description . Schlumberger NV, Houston, TX, USA.
  52. Sørensen, B.
    1975. Energy and resources. Science, 189, 255–260, https://doi.org/10.1126/science.189.4199.255
    [Google Scholar]
  53. Sørensen, B., Petersen, A.H. et al.
    2004. Hydrogen as an energy carrier: scenarios for future use of hydrogen in the Danish energy system. International Journal of Hydrogen Energy, 29, 23–32, https://doi.org/10.1016/S0360-3199(03)00049-1
    [Google Scholar]
  54. Wang, X. & Economides, M.
    2009. Advanced Natural Gas Engineering. Gulf Publishing, Houston, TX, USA.
    [Google Scholar]
  55. Wollenweber, J., Alles, S., Busch, A., Krooss, B.M., Stanjek, H. & Littke, R.
    2010. Experimental investigation of the CO2 sealing efficiency of caprocks. International Journal of Greenhouse Gas Control, 4, 231–241, https://doi.org/10.1016/j.ijggc.2010.01.003
    [Google Scholar]
  56. Young, C.L.
    1981. Hydrogen and Deuterium. IUPAC Solubility Data Series, 5/6. Pergamon Press, Oxford.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-050
Loading
/content/journals/10.1144/petgeo2016-050
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error