1887
Volume 23, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Improved prediction of the recovery of oil-in-place in basin-floor fan reservoirs requires accurate characterization and modelling of multiscale heterogeneities. The use of outcrop analogues is a key tool to augment this process by documenting and quantifying sedimentary architecture, hierarchy and sedimentary facies relationships. A 3D geological modelling workflow is presented that tests the impact of fine-scale heterogeneities within basin-floor lobe complexes on reservoir connectivity. Construction of geological models of a basin-floor lobe complex allows realistic depositional architecture and facies distributions to be captured. In addition, detailed models are constructed from channelized areas within a basin-floor lobe complex. Petrophysical modelling and streamline analysis are employed to test the impact on reservoir connectivity between lobe models with: (i) vertically stacked facies with coarsening- and thickening-upwards trends in all locations; and (ii) lateral facies changes with dimensions and distributions constrained from outcrop data. The findings show that differences in facies architecture and, in particular, lobe-on-lobe amalgamation have a significant impact on connectivity and macroscopic sweep efficiency, which influence the production results. Channelized lobe areas are less predictable reservoir targets owing to uncertainties associated with channel-fill heterogeneities. The use of deterministic sedimentary architecture concepts and facies relationships have proven vital in the accurate modelling of reservoir heterogeneities.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-087
2016-09-30
2020-05-29
Loading full text...

Full text loading...

References

  1. Aarnes, J.E., Krogstad, S. & Lie, K-A.
    2008. Multiscale mixed/mimetic methods on corner-point grids. Computational Geosciences, 12, 297–315, http://doi.org/10.1007/s10596-007-9072-8
    [Google Scholar]
  2. Alabert, F.G. & Massonnat, G.J.
    1990. Heterogeneity in a complex turbiditic reservoir: stochastic modelling of facies and petrophysical variability. Paper SPE 20604 presented at the SPE Annual Technical Conference and Exhibition , 23–26 September 1990, New Orleans, Louisiana, USA.
  3. Alhuthali, A., Oyerinde, A. & Datta-Gupta, A.
    2006. Optimal waterflood management using rate controls. SPE 102478 presented at the SPE Annual Technical Conference and Exhibition , 24–27 September 2006, San Antonio, Texas, USA.
  4. Alpak, F.O., Barton, M.D. & Naruk, S.J.
    2013. The impact of fine-scale turbidite channel architecture on deep-water reservoir performance.American Association of Petroleum Geologists Bulletin, 97, 251–284, http://doi.org/10.1306/04021211067
    [Google Scholar]
  5. Amy, L.A., Peachey, S.A., Gardiner, A.R., Pickup, G.E., Mackay, E. & Stephen, K.D.
    2013. Recovery efficiency from a turbidite sheet system: numerical simulation of waterflooding using outcrop-based geological models. Petroleum Geoscience, 19, 123–138, http://doi.org/10.1144/petgeo2011-041
    [Google Scholar]
  6. Avseth, P., Mukerji, T., Jørstad, T., Mavko, A. & Veggeland, T.
    2001. Seismic reservoir mapping from 3-D AVO in a North Sea turbidite system. Geophysics, 66, 1157–1176, http://doi.org/10.1190/1.1487063
    [Google Scholar]
  7. Barton, M., O'Byrne, C., Pirmez, C., Prather, B., Van der Vlugt, F., Alpak, F.O. & Sylvester, Z.
    2010. Turbidite channel architecture: Recognizing and quantifying the distribution of channel-base drapes using core and dipmeter data. In: Pöppelreiter, M., García-Carballido, C. & Kraaijveld, M. (eds) Dipmeter and Bore-Hole Image Log Technology. American Association of Petroleum Geologists, Memoirs, 92, 195–210, http://doi.org/10.1306/13181284M923289
    [Google Scholar]
  8. Beaubouef, R.T., Van Wagoner, J.C. & Adair, N.L.
    2003. Ultra-high resolution 3-D characterization of deep-water deposits – II: Insights into the evolution of a submarine fan and comparisons with river deltas. Extended abstracts presented at the AAPG Annual Meeting , May 11–14, 2003, Salt Lake City, Utah, USA.
  9. Bennes, M. & Hamon, G.
    2007. Core petrophysical synthesis carried out at a scale of a basin, some examples from Tertiary offshore reservoirs. In: Proceedings from the 2007 International Symposium of the Society of Core Analysts, September 10–13, 2007, Calgary, Canada . Society of Core Analysts, Fredericton, New Brunswick, Canada, Paper SCA2007-27.
  10. Bouma, A. & Wickens, H.d.V.
    1991. Permian passive margin submarine fan complex, Karoo Basin, South Africa: Possible model to Gulf of Mexico. Gulf Coast Association of Geological Societies Transactions, 41, 30–42.
    [Google Scholar]
  11. 1994. Tanqua Karoo, ancient analog for fine-grained submarine fans. In: Weimer, P., Bouma, A.H. & Perkins, B.F. (eds) Submarine Fans and Turbidite Systems: Sequence Stratigraphy, Reservoir Architecture, and Production Characteristics. Gulf Coast Section SEPM Foundation 15th Research Conference Proceedings.GCSSEPM, Houston, Texas, USA, 23–34.
  12. Brandsæter, I., Wist, H.T. et al.
    2001. Ranking of stochastic realizations of complex tidal reservoirs using streamline simulation criteria. Petroleum Geoscience, 7, S53–S63, http://doi.org/10.1144/petgeo.7.S.S53
    [Google Scholar]
  13. Brouwer, D.R. & Jansen, J.D.
    2002. Dynamic optimization of water flooding with smart wells using optimal control theory. Paper SPE 78278 presented at the SPE European Petroleum Conference , 29–31 October 2002, Aberdeen, UK.
  14. Brouwer, D.R., Jansen, J.D., Van der Starre, S., Van Kruijsdijk, C.P.J.W. & Berentsen, C.W.J.
    2001. Recovery increase through water flooding with smart well technology. Paper SPE 68979 presented at the SPE European Formation Damage Conference , 21–22 May 2001, The Hague, The Netherlands.
  15. Brunt, R.L., Hodgson, D.M., Flint, S.S., Pringle, J.K., Di Celma, C., Prélat, A. & Grecula, M.
    2013. Confined to unconfined: anatomy of a base of slope succession, Karoo Basin, South Africa. Marine and Petroleum Geology, 41, 206–221, http://doi.org/10.1016/j.marpetgeo.2012.02.007
    [Google Scholar]
  16. Bryant, I.D. & Flint, S.S.
    1993. Quantitative clastic reservoir geological modelling: problems and perspectives. In: Flint, S.S. & Bryant, I.I. (eds) The Geological Modelling of Hydrocarbon Reservoirs and Outcrop Analogues. International Association of Sedimentologists, Special Publications, 15, 3–20.
    [Google Scholar]
  17. Clark, J.D. & Pickering, K.T.
    1996. Architectural elements and growth patterns of submarine channels: application to hydrocarbon exploration. American Association of Petroleum Geologists Bulletin, 80, 194–220.
    [Google Scholar]
  18. Deptuck, M.E., Piper, M.E., David, J.W., Savoye, B. & Gervais, A.
    2008. Dimensions and architecture of late Pleistocene submarine lobes off the northern margin of East Corsica. Sedimentology, 55, 869–898, http://doi.org/10.1111/j.1365-3091.2007.00926.x
    [Google Scholar]
  19. De Wit, M.J. & Ransome, I.G.
    1992. Regional inversion tectonics along the southern margin of Gondwana. In: De Wit, M.J. & Ransome, I.G.D. (eds) Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa. Balkema, Amsterdam, The Netherlands, 15–22.
    [Google Scholar]
  20. Drinkwater, N.J. & Pickering, K.T.
    2001. Architectural elements in a high-continuity sand-prone turbidite system, late Precambrian Kongsfjord Formation, northern Norway: Application to hydrocarbon reservoir characterization. American Association of Petroleum Geologists Bulletin, 85, 1731–1757, http://doi.org/10.1306/8626D059-173B-11D7-8645000102C1865D
    [Google Scholar]
  21. Eschard, R., Deschamps, R., Dobligez, B., Lerat, O., Langlais, V. & Euzen, T.
    2014. Connectivity estimation between turbiditic channels and overbank deposits from the modelling of an outcrop analogue (Pab Formation, Maastrichtian, Pakistan). In: Martinius, A.W., Howell, J.A. & Good, T.R. (eds) Sediment-Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface. Geological Society, London, Special Publications, 387, 203–231, http://doi.org/10.1144/SP387.7
    [Google Scholar]
  22. Falivene, O., Arbués, P., Howell, J., Muñoz, J.A., Fernández, O. & Marzo, M.
    2006. Hierarchical geocellular facies modelling of a turbidite reservoir analogue from the Eocene of the Ainsa Basin, NE Spain. Marine and Petroleum Geology, 23, 679–701, http://doi.org/10.1016/j.marpetgeo.2006.05.004
    [Google Scholar]
  23. Fildani, A., Weislogel, A. et al.
    2009. U–Pb zircon ages from the southwestern Karoo Basin, South Africa – Implications for the Permian–Triassic boundary. Geology, 37, 719–222, http://doi.org/10.1130/G25685A.1
    [Google Scholar]
  24. Flint, S.S., Hodgson, D.M. et al.
    2011. Depositional architecture and sequence stratigraphy of the Karoo basin floor to shelf edge succession, Laingsburg depocentre, South Africa. Marine and Petroleum Geology, 28, 658–674, http://doi.org/10.1016/j.marpetgeo.2010.06.008
    [Google Scholar]
  25. Funk, J.E., Slatt, R.M. & Pyles, D.R.
    2012. Quantification of static connectivity between deep-water channels and stratigraphically adjacent architectural elements using outcrop analogs. American Association of Petroleum Geologists Bulletin, 96, 277–300, http://doi.org/10.1306/07121110186
    [Google Scholar]
  26. Groenenberg, R.M., Hodgson, D.M., Prélat, A., Luthi, S.M. & Flint, S.S.
    2010. Flow–deposit interaction in submarine lobes: Insights from outcrop observations and realizations of a process-based numerical model. Journal of Sedimentary Research, 80, 252–267, http://doi.org/10.2110/jsr.2010.028
    [Google Scholar]
  27. Hewett, T.A.
    1986. Fractal distributions of reservoir heterogeneity and their influence on fluid transport. SPE 15386 presented at the SPE Annual Technical Conference and Exhibition , 5–8 October 1986, New Orleans, Louisiana, USA.
  28. Hodgetts, D., Drinkwater, N.J., Hodgson, D.M., Kavanagh, J., Flint, S.S., Keogh, K.J. & Howell, J.A.
    2004. Three-dimensional geological models from outcrop data using digital data collection techniques: an example from the Tanqua Karoo depocentre, South Africa. In: Curtis, A.C. & Wood, R. (eds) Geological Prior Information: Informing Science and Engineering. Geological Society, London, Special Publications, 239, 57–75, http://doi.org/10.1144/GSL.SP.2004.239.01.05
    [Google Scholar]
  29. Hodgson, D.M.
    2009. Distribution and origin of hybrid beds in sand-rich submarine fans of the Tanqua depocentre, Karoo Basin, South Africa. Marine and Petroleum Geology, 26, 1940–1956, http://doi.org/10.1016/j.marpetgeo.2009.02.011
    [Google Scholar]
  30. Hodgson, D.M., Flint, S.S., Hodgetts, D., Drinkwater, N.J., Johannessen, E.P. & Luthi, S.M.
    2006. Stratigraphic evolution of fine-grained submarine fan systems, Tanqua depocenter, Karoo Basin, South Africa.Journal of Sedimentary Research, 76, 20–40, http://doi.org/10.2110/jsr.2006.03
    [Google Scholar]
  31. Hofstra, M., Hodgson, D.M., Peakall, J. & Flint, S.S.
    2015. Giant scour-fills in ancient channel–lobe transition zones: Formative processes and depositional architecture. Sedimentary Geology, 329, 98–114, http://doi.org/10.1016/j.sedgeo.2015.09.004
    [Google Scholar]
  32. Hovadik, J.M. & Larue, D.K.
    2007. Static characterizations of reservoirs: refining the concepts of connectivity and continuity. Petroleum Geoscience, 13, 195–211, http://doi.org/10.1144/1354-079305-697
    [Google Scholar]
  33. Howell, J.A., Martinius, A.W. & Good, T.R.
    2014. The application of outcrop analogues in geological modelling: a review, present status and future outlook. In: Martinius, A.W., Howell, J.A. & Good, T.R. (eds) Sediment-Body Geometry and Heterogeneity: Analogue Studies for Modelling the Subsurface. Geological Society, London, Special Publications, 387, 1–25, http://doi.org/10.1144/SP387.12
    [Google Scholar]
  34. Hubbard, S.M., Covault, J.A., Fildani, A. & Romans, B.W.
    2014. Sediment transfer and deposition in slope channels: Deciphering the record of enigmatic deep-sea processes from outcrop. Geological Society of America Bulletin, 126, 857–871, http://doi.org/10.1130/B30996.1
    [Google Scholar]
  35. Idrobo, E.A., Choudhary, M.K. & Datta-Gupta, A.
    2000. Swept volume calculations and ranking geostatistical reservoir models using streamline simulation. Paper SPE 62557 presented at the SPE/AAPG Western Regional Meeting , 19–22 June 2000, Long Beach, California, USA.
  36. Jackson, M., Percival, J., Mostaghimi, P., Tollit, B., Pavlidis, D., Pain, C. & Blunt, M.
    2015. Reservoir modelling of flow simulation by use of surfaces, adaptive unstructured meshes, and an overlapping-control-volume finite-element method. SPE Reservoir Evaluation & Engineering, 18, 115–132, http://doi.org/10.2118/163633-PA
    [Google Scholar]
  37. Johnson, S.D., Flint, S.S., Hinds, D. & Wickens, H.d.V.
    2001. Anatomy, geometry and sequence stratigraphy of basin floor to slope turbidite systems, Tanqua Karoo, South Africa. Sedimentology, 48, 987–1023, http://doi.org/10.1046/j.1365-3091.2001.00405.x
    [Google Scholar]
  38. Joseph, P., Babonneau, N. et al.
    2000. The Annot Sandstone outcrops (French Alps): Architecture description as input for quantification and 3-D reservoir modelling. In: Weimer, P., Slatt, R.M., Coleman, J., Rosen, N.C., Nelson, H., Bouma, A.H., Styzen, M.J. & Lawrence, D.T. (eds) Deep-Water Reservoirs of the World: Gulf Coast Section SEPM Foundation 20th Annual Research Conference, 3–6 December 2000, Houston, Texas. GCSSEPM, Special Publications, 28, 422–449.
  39. Kane, I.A. & Pontén, A.S.M.
    2012. Submarine transitional flow deposits in the Palaeogene Gulf of Mexico. Geology, 40, 1119–1122, http://doi.org/10.1130/G33410.1
    [Google Scholar]
  40. Keogh, K.J., Berg, F.K. & Petek, G
    . 2008. A method for quantifying geological uncertainties in assessing remaining oil targets: a case study from the Glitne Field, North Sea. In: Robinson, A., Griffiths, P., Price, S., Hegre, J., Muggeridge, A. (eds) The Future of Geological Modelling in Hydrocarbon Development. Geological Society, London, Special Publications, 309, 193–203, http://doi.org/10.1144/SP309.14
    [Google Scholar]
  41. Kirschner, R.H. & Bouma, A.H.
    2000. Characteristics of a distributary channel–levee–overbank system, Tanqua Karoo. In: Bouma, A.H. & Stone, J. (eds) Fine-Grained Turbidite Systems. American Association of Petroleum Geologists, Memoirs, 80, 337–364.
    [Google Scholar]
  42. Kleverlaan, K. & Cossey, S.P.J.
    1993. Permeability barriers within sand-rich submarine fans: outcrop studies of the Tabernas Basin, SE Spain. In: Eschard, R. & Doligez, B. (eds) Subsurface Reservoir Characterisation from Outcrop Observations. Editions Technip, Paris, 161–164.
    [Google Scholar]
  43. Labourdette, R., Devilliers, M.C. & Bui, T.
    2013. History match of a DST using a turbidite elementary channels modelling technique, deep offshore Congo. Paper SPE-166006 presented at the SPE Reservoir Characterization and Simulation Conference and Exhibition , 16–18 September 2013, Abu Dhabi, UAE.
  44. Larue, D.K.
    2004. Outcrop and waterflood simulation modeling of the 100-foot channel complex, Texas, and the Ainsa II channel complex, Spain: Analogs to multistory and multilateral channelized slope reservoirs. In: Grammer, M., Harris, P.M. & Eberli, G.P. (eds) Integration of Outcrop and Modern Analogs in Reservoir Modelling. American Association of Petroleum Geologists, Memoirs, 80, 337–364.
    [Google Scholar]
  45. Larue, D.K. & Friedmann, F.
    2005. The controversy concerning stratigraphic architecture of channelized reservoirs and recovery by waterflooding.Petroleum Geoscience, 11, 131–146, http://doi.org/10.1144/1354-079304-626
    [Google Scholar]
  46. Larue, D.K. & Hovadik, J.
    2012. Rapid earth modelling for appraisal and development studies of deep-water clastic reservoirs and the concept of ‘procycling’. Petroleum Geoscience, 18, 201–218, http://doi.org/10.1144/1354-079311-033
    [Google Scholar]
  47. López-Gamundí, O.R. & Rossello, E.A.
    1998. Basin fill evolution and paleotectonic patterns along the Samfrau geosyncline: the Sauce Grande basin–Ventana foldbelt (Argentina) and Karoo basin–Cape foldbelt (South Africa) revisited.Geologische Rundschau, 86, 819–834, http://doi.org/10.1144/1354-079311-033
    [Google Scholar]
  48. Luthi, S.M., Hodgson, D.M., Geel, C.R., Flint, S.S., Goedbloed, J.W., Drinkwater, N.J. & Johannessen, E.P.
    2006. Contribution of research borehole data to modelling fine-grained turbidite reservoir analogues, Permian Tanqua–Karoo basin-floor fans (South Africa). Petroleum Geoscience, 12, 175–190, http://doi.org/10.1144/1354-079305-693
    [Google Scholar]
  49. Macdonald, H.A., Peakall, J., Wignall, P.B. & Best, J.
    2011. Sedimentation in deep-sea lobe-elements: implications for the origin of thickening-upward sequences. Journal of the Geological Society, London, 168, 319–331, http://doi.org/10.1144/0016-76492010-036
    [Google Scholar]
  50. Mayall, M., Jones, E. & Casey, M.
    2006. Turbidite channel reservoirs – key elements in facies prediction and effective development. Marine and Petroleum Geology, 23, 821–841, http://doi.org/10.1016/j.marpetgeo.2006.08.001
    [Google Scholar]
  51. McKay, M.P., Weislogel, A.L., Fildani, A., Brunt, R.L., Hodgson, D.M. & Flint, S.S.
    2015. U-PB zircon tuff geochronology from the Karoo Basin, South Africa: implications of zircon recycling on stratigraphic age controls.International Geology Review, 57, 393–410, http://doi.org/10.1080/00206814.2015.1008592
    [Google Scholar]
  52. Mutti, E.
    1977. Distinctive thin-bedded turbidite facies and related depositional environments in the Eocene Hecho Group (South-central Pyrenees, Spain). Sedimentology, 24, 107–131, http://doi.org/10.1111/j.1365-3091.1977.tb00122.x
    [Google Scholar]
  53. Mutti, E. & Sonnino, M.
    1981. Compensation cycles: a diagnostic feature of sandstone lobes. In: Abstracts Volume, 2nd IAS European Regional Meeting, Bologna, Italy . International Association of Sedimentology, Gent, Belgium, 120–123.
    [Google Scholar]
  54. Piper, D.J.W. & Normark, W.R.
    1983. Turbidite depositional patterns and flow characteristics, Navy Submarine Fan, California Borderland. Sedimentology, 30, 681–694, http://doi.org/10.1111/j.1365-3091.1983.tb00702.x
    [Google Scholar]
  55. Pirmez, C., Beaubouef, R.T., Friedmann, S.J. & Mohrig, D.C.
    2000. Equilibrium profile and baselevel in submarine channels: examples from Late Pleistocene systems and implications for the architecture of deepwater reservoirs. In: Weimer, P., Slatt, R.M., Coleman, J., Rosen, N.C., Nelson, H., Bouma, A.H., Styzen, M.J. & Lawrence, D.T. (eds) Deep-Water Reservoirs of the World: Gulf Coast Section SEPM Foundation 20th Annual Research Conference . GCSSEPM, Special Publications, 782–805.
  56. Prélat, A.
    2010. Evolution, architecture and hierarchy of distributary deepwater deposits: a high resolution outcrop investigation of submarine lobe deposits from the Permian Karoo Basin, South Africa. Unpublished PhD Thesis, University of Liverpool.
    [Google Scholar]
  57. Prélat, A. & Hodgson, D.M.
    2013. The full range of turbidite bed thickness patterns in submarine lobes: controls and implications. Journal of the Geological Society, London, 170, 209–214, http://doi.org/10.1144/jgs2012-056
    [Google Scholar]
  58. Prélat, A., Hodgson, D.M. & Flint, S.S.
    2009. Evolution, architecture and hierarchy of distributary deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154, http://doi.org/10.1111/j.1365-3091.2009.01073.x
    [Google Scholar]
  59. Prélat, A., Covault, J.A., Hodgson, D.M., Fildani, A. & Flint, S.S.
    2010. Intrinsic controls on the range of volumes, morphologies, and dimensions of submarine lobes. Sedimentary Geology, 232, 66–76, http://doi.org/10.1016/j.sedgeo.2010.09.010
    [Google Scholar]
  60. Pringle, J.K., Howell, J.A., Hodgetts, D., Westerman, A.R. & Hodgson, D.M.
    2006. Virtual outcrop models of petroleum reservoir analogues: a review of the current state-of-the-art. First Break, 24, 33–42, http://doi.org/10.3997/1365-2397.2006005
    [Google Scholar]
  61. Pringle, J.K., Brunt, R.L., Hodgson, D.M. & Flint, S.S.
    2010. Capturing stratigraphic and sedimentological complexity from submarine channel complex outcrops to digital 3D models, Karoo Basin, South Africa. Petroleum Geoscience, 16, 307–330, http://doi.org/10.1144/1354-079309-028
    [Google Scholar]
  62. Pyrcz, M.J. & Deutsch, C.V.
    2014. Geostatistical reservoir modelling. Oxford University Press, New York.
    [Google Scholar]
  63. Pyrcz, M.J., Catuneanu, O. & Deutsch, C.V.
    2005. Stochastic surface-based modeling of turbidite lobes. American Association of Petroleum Geologists Bulletin, 89, 177–191, http://doi.org/10.1306/09220403112
    [Google Scholar]
  64. Ricci-Lucchi, F.
    1975. Depositional cycles in two turbidite formations of Northern Apennines (Italy). Journal of Sedimentary Petrology, 45, 3–43, http://doi.org/10.1306/212F6CB7-2B24-11D7-8648000102C1865D
    [Google Scholar]
  65. Richards, M. & Bowman, M.
    1998. Submarine fans and related depositional systems II: variability in reservoir architecture and wireline log character. Marine and Petroleum Geology, 15, 821–839, http://doi.org/10.1016/S0264-8172(98)00042-7
    [Google Scholar]
  66. Ringrose, P. & Bentley, M.
    2015. Reservoir Model Design. Springer, Berlin.
    [Google Scholar]
  67. Saikia, K., Khan, W. & Ramakrishnan, S.
    2015. Challenges in deepwater reservoir characterization: From well log interpretation and well testing to 3D geocellular modelling. Paper SPE 175071 presented at the SPE Annual Technical Conference and Exhibition , 28–30 September 2015, Houston, Texas, USA.
  68. Saller, A., Werner, K., Sugiaman, F., Fransiskus, C.A., May, R., Glenn, D. & Craig, B.
    2008. Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia. American Association of Petroleum Geologists Bulletin, 92, 919–949, http://doi.org/10.1306/03310807110
    [Google Scholar]
  69. Scaglioni, P., Ruvo, L. & Cozzi, M.
    2006. Implicit net-to-gross in the petrophysical characterization of thin-layered reservoirs. Petroleum Geoscience, 12, 325–333, http://doi.org/10.1144/1354-079305-694
    [Google Scholar]
  70. Schwarz, E. & Arnott, R.W.C.
    2007. Anatomy and evolution of a slope channel-complex set (Neoproterozoic Isaac Formation, Windermere Supergroup, southern Canadian Cordillera): implications for reservoir characterizations. Journal of Sedimentary Research, 77, 89–109, http://doi.org/10.2110/jsr.2007.015
    [Google Scholar]
  71. Shanmugam, G. & Moiola, R.J.
    1991. Types of submarine fan lobes: Models and implications. American Association of Petroleum Geologists Bulletin, 75, 156–179.
    [Google Scholar]
  72. Sprague, A.R.G., Garfield, T.R. et al.
    2005. Integrated slope channel depositional models: the key to successful prediction of reservoir presence and quality in offshore west Africa. CIPM (Colegio de Ingenieros Petroleros de México), cuarto E-Exitep 2005, 20–23 February 2005, Veracruz, Mexico, 1–13.
    [Google Scholar]
  73. Stephen, K.D., Clark, J.D. & Gardiner, A.R.
    2001. Outcrop-based stochastic modelling of turbidite amalgamation and its effects on hydrocarbon recovery.Petroleum Geology, 7, 163–172, http://doi.org/10.1144/petgeo.7.2.163
    [Google Scholar]
  74. Stevenson, C.J., Jackson, C.A.L., Hodgson, D.M., Hubbard, S.M. & Eggenhuisen, J.T.
    2015. Deep-water sediment bypass. Journal of Sedimentary Research, 85, 1058–1081, http://doi.org/10.2110/jsr.2015.63
    [Google Scholar]
  75. Stow, D.A. & Johansson, M.
    2000. Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 17, 145–174, http://doi.org/10.1016/S0264-8172(99)00051-3
    [Google Scholar]
  76. Straub, K.M. & Pyles, D.R.
    2012. Quantifying the hierarchical organization of compensation in submarine fans using surface statistics. Journal of Sedimentary Research, 82, 889–898, http://doi.org/10.2110/jsr.2012.73
    [Google Scholar]
  77. Strebelle, S., Payrazyan, K. & Caers, J.
    2003. Modeling of a deepwater turbidite reservoir conditional to seismic data using principal component analysis and multiple-point geostatistics. SPE Journal, 8, 227–235, http://doi.org/10.2118/85962-PA
    [Google Scholar]
  78. Sullivan, M., Jensen, G., Goulding, F., Jennette, D., Foreman, L. & Stern, D.
    2000. Architectural analysis of deep-water outcrops: Implications for exploration and development of the Diana sub-basin, western Gulf of Mexico. In: Weimer, P., Slatt, R.M., Coleman, J., Rosen, N.C., Nelson, H., Bouma, A.H., Styzen, M.J. & Lawrence, D.T. (eds) Deep-Water Reservoirs of the World: Gulf Coast Section SEPM Foundation 20th Annual Research Conference . GCSSEPM, Special Publications, 1010–1032.
  79. Sullivan, M.D., Foreman, J.L., Jennette, D.C., Stern, D., Jensen, G.N. & Goulding, F.J.
    2004. An integrated approach to characterization and modelling of deep-water reservoirs, Diana field, western Gulf of Mexico. In: Grammer, G.M., Harris, P.M. & Eberli, G.P. (eds) Integration of Outcrop and Modern Analogs in Reservoir Modeling. American Association of Petroleum Geologists, Memoirs, 80, 215–234.
    [Google Scholar]
  80. Van der Werff, W. & Johnson, S.
    2003. High resolution stratigraphic analysis of a turbidite system, Tanqua Karoo Basin, South Africa. Marine and Petroleum Geology, 20, 45–69, http://doi.org/10.1016/S0264-8172(03)00025-4
    [Google Scholar]
  81. Veevers, J.J., Cole, D.I. & Cowan, E.J.
    1994. Southern Africa: Karoo basin and Cape fold belt. In: Veevers, J.J. & Powell, C.Mc.A. (eds) Permian–Triassic Pangean Basins along the Panthalassan Margin of Gondwanaland. Geological Society of America, Memoirs, 184, 223–279, http://doi.org/10.1130/MEM184-p223
    [Google Scholar]
  82. Wild, R., Flint, S.S. & Hodgson, D.M.
    2005. Architecture and stratigraphic evolution of multiple, vertically-stacked slope channel compexes, Tanqua depocentre, Karoo Basin, South Africa. In: Hodgson, D.M. & Flint, S.S. (eds). Submarine Slope Systems: Processes and Products. Geological Society, London, Special Publications, 244, 89–111, http://doi.org/10.1144/GSL.SP.2005.244.01.06
    [Google Scholar]
  83. Williams, G.J.J., Mansfield, M., McDonald, D.G. & Bush, M.D.
    2004. Top-down reservoir modelling. Paper SPE 89974 presented at the SPE Annual Technical Conference and Exhibition , 26–29 September 2004, Houston, Texas, USA.
  84. Zhang, X., Pyrcz, M.J. & Deutsch, C.V.
    2009. Stochastic surface modeling of deepwater depositional systems for improved reservoir models. Journal of Petroleum Science and Engineering, 68, 118–134, http://doi.org/10.1016/j.petrol.2009.06.019
    [Google Scholar]
  85. Zou, F., Slatt, R., Bastidas, R. & Ramirez, B.
    2012. Integrated outcrop reservoir characterization, modelling, and simulation of the Jackfork Group at the Baumgartner Quarry area. American Association of Petroleum Geologists Bulletin, 96, 1429–1448, http://doi.org/10.1306/01021210146
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-087
Loading
/content/journals/10.1144/petgeo2016-087
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error