1887
Volume 26, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

In many petroleum-bearing, data-poor ‘frontier’ basins, source, reservoir and seal distribution is poorly constrained, making it difficult to identify petroleum systems and play models. However, 3D seismic reflection data provide an opportunity to directly map the 3D distribution of key petroleum system elements, thereby supplementing typically sparse, 1D sedimentary facies information available from wells. Here, we examine the Farsund Basin, an underexplored basin offshore southern Norway. Despite lying in the mature North Sea Basin, the Farsund Basin contains only one well; meaning there remains a poor understanding of its hydrocarbon potential. This east-trending basin is anomalous to the north-trending basins present regionally, having experienced a different tectonic, and most likely geomorphological, evolution. We identify a series of east-flowing rivers in the Middle Jurassic, the distribution of which are controlled by salt-detached faults. In the Middle Jurassic, a series of carbonate reefs, expressed as subcircular amplitude anomalies, developed. Within the Upper Jurassic we identify numerous curvilinear features, which correspond to the downlap termination of southwards-prograding deltaic clinoforms. We show how seismic-attribute-driven analysis can determine the geomorphological development of basins, offering insights into both the local and regional tectonostratigraphic evolution of an area, and helping to determine its hydrocarbon potential.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-056
2019-02-21
2020-02-26
Loading full text...

Full text loading...

References

  1. Agirrezabala, L.M., Kiel, S., Blumenberg, M., Schäfer, N. & Reitner, J.
    2013. Outcrop analogues of pockmarks and associated methane-seep carbonates: A case study from the Lower Cretaceous (Albian) of the Basque–Cantabrian Basin, western Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology, 390, 94–115, https://doi.org/10.1016/j.palaeo.2012.11.020
    [Google Scholar]
  2. Andresen, K.J., Huuse, M., Schodt, N.H., Clausen, L.F. & Seidler, L.
    2011. Hydrocarbon plumbing systems of salt minibasins offshore Angola revealed by three-dimensional seismic analysis. AAPG Bulletin, 95, 1039–1065, https://doi.org/10.1306/12131010046
    [Google Scholar]
  3. Andsbjerg, J.
    2003. Sedimentology and sequence stratigraphy of the Bryne and Lulu formations, middle Jurassic, northern Danish Central Graben. In: Ineson, J.R. & Surlyk, F. (eds) The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin, 1, 301–347.
    [Google Scholar]
  4. Bell, R.E., Jackson, C.A.L., Whipp, P.S. & Clements, B.
    2014. Strain migration during multiphase extension: Observations from the northern North Sea. Tectonics, 33, 1936–1963, https://doi.org/10.1002/2014TC003551
    [Google Scholar]
  5. Billy, J., Robin, N., Hein, C.J., Certain, R. & FitzGerald, D.M.
    2014. Internal architecture of mixed sand-and-gravel beach ridges: Miquelon–Langlade Barrier, NW Atlantic. Marine Geology, 357, 53–71, https://doi.org/10.1016/j.margeo.2014.07.011
    [Google Scholar]
  6. Bridge, J.S. & Leeder, M.R.
    1979. A simulation model of alluvial stratigraphy. Sedimentology, 26, 617–644, https://doi.org/10.1111/j.1365-3091.1979.tb00935.x
    [Google Scholar]
  7. Brock, J.C., Palaseanu-Lovejoy, M., Wright, C.W. & Nayegandhi, A.
    2008. Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA. Coral Reefs, 27, 555–568, https://doi.org/10.1007/s00338-008-0370-y
    [Google Scholar]
  8. Brown, A.R.
    2011. Interpretation of Three-Dimensional Seismic Data. 7th edn. American Association of Petroleum Geologists Memoirs, 42.
    [Google Scholar]
  9. Brun, J.-P. & Tron, V.
    1993. Development of the North Viking Graben: inferences from laboratory modelling. Sedimentary Geology, 86, 31–51, https://doi.org/10.1016/0037-0738(93)90132-O
    [Google Scholar]
  10. Cartwright, J. & Huuse, M.
    2005. 3D seismic technology: the geological ‘Hubble’. Basin Research, 17, 1–20, https://doi.org/10.1111/j.1365-2117.2005.00252.x
    [Google Scholar]
  11. Chopra, S. & Marfurt, K.J.
    2008. Emerging and future trends in seismic attributes. The Leading Edge, 27, 298–318, https://doi.org/10.1190/1.2896620
    [Google Scholar]
  12. Christensen, J.E. & Korstgård, J.A.
    1994. The Fjerritslev Fault offshore Denmark – salt and fault interactions. First Break, 12, 31–42, https://doi.org/10.3997/1365-2397.1994003
    [Google Scholar]
  13. Clark, J.A., Stewart, S.A. & Cartwright, J.A.
    1998. Evolution of the NW margin of the North Permian Basin, UK North Sea. Journal of the Geological Society, London, 155, 663–676, https://doi.org/10.1144/gsjgs.155.4.0663
    [Google Scholar]
  14. Colpaert, A., Pickard, N., Mienert, J., Henriksen, L.B., Rafaelsen, B. & Andreassen, K.
    2007. 3D seismic analysis of an Upper Palaeozoic carbonate succession of the Eastern Finnmark Platform area, Norwegian Barents Sea. Sedimentary Geology, 197, 79–98, https://doi.org/10.1016/j.sedgeo.2006.09.001
    [Google Scholar]
  15. Coward, M.P., Dewey, J.F., Hempton, M. & Holroyd, J.
    2003. Tectonic evolution. In: Evans, D., Graham, C., Armour, A. & Bathurst, P. (eds) The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea. Geological Society, London, 17–33.
    [Google Scholar]
  16. Davies, R.J. & Stewart, S.A.
    2005. Emplacement of giant mud volcanoes in the South Caspian Basin: 3D seismic reflection imaging of their root zones. Journal of the Geological Society, London, 162, 1–4, https://doi.org/10.1144/0016-764904-082
    [Google Scholar]
  17. Dreyer, T., Whitaker, M., Dexter, J., Flesche, H. & Larsen, E.
    2005. From spit system to tide-dominated delta: integrated reservoir model of the Upper Jurassic Sognefjord Formation on the Troll West Field. In: Doré, A.G. & Vining, B.A. (eds) Petroleum Geology: North-West Europe and Global Perspectives ‒ Proceedings of the 6th Petroleum Geology Conference. Geological Society, London, 423–448, https://doi.org/10.1144/0060423
    [Google Scholar]
  18. Eide, C.H., Klausen, T.G., Katkov, D., Suslova, A.A. & Helland-Hansen, W.
    2017. Linking an Early Triassic delta to antecedent topography: Source-to-sink study of the southwestern Barents Sea margin. Geological Society of America Bulletin, 130, 263–283, https://doi.org/10.1130/b31639.1
    [Google Scholar]
  19. Enos, P. & Sawatsky, L.H.
    1981. Pore networks in Holocene carbonate sediments. Journal of Sedimentary Research, 51, 961–985, https://doi.org/10.1306/212f7df1-2b24-11d7-8648000102c1865d
    [Google Scholar]
  20. Færseth, R.B.
    1996. Interaction of Permo-Triassic and Jurassic extensional fault-blocks during the development of the northern North Sea. Journal of the Geological Society, London, 153, 931–944, https://doi.org/10.1144/gsjgs.153.6.0931
    [Google Scholar]
  21. Fichler, C., Henriksen, S., Rueslaatten, H. & Hovland, M.
    2005. North Sea Quaternary morphology from seismic and magnetic data: indications for gas hydrates during glaciation. Petroleum Geoscience, 11, 331–337, https://doi.org/10.1144/1354-079304-635
    [Google Scholar]
  22. Glennie, K.W.
    1997. Recent advances in understanding the southern North Sea Basin: a summary. In: Ziegler, K., Turner, P. & Daines, S.R. (eds) Petroleum Geology of the Southern North Sea: Future Potential. Geological Society, London, Special Publications, 123, 17–29, https://doi.org/10.1144/gsl.sp.1997.123.01.03
    [Google Scholar]
  23. Glennie, K.W., Higham, J. & Stemmerik, L.
    2003. Permian. In: Evans, D. (ed.) The Millenium Atlas: Petroleum Geology of the Central and Northern North Sea. Geological Society, London, 91–103.
    [Google Scholar]
  24. Goldsmith, P.J., Rich, B. & Standring, J.
    1995. Triassic correlation and stratigraphy in the South Central Graben, UK North Sea. In: Boldy, S.A.R. (ed.) Permian and Triassic Rifting in Northwest Europe. Geological Society, London, Special Publications, 91, 123–143, https://doi.org/10.1144/gsl.sp.1995.091.01.07
    [Google Scholar]
  25. Hamar, G., Fjaeran, T. & Hesjedal, A.
    1983. Jurassic stratigraphy and tectonics of the south-southeastern Norwegian offshore. In: Kaasschieter, J.P.H. & Reijers, T.J.A. (eds) Petroleum Geology of the Southeastern North Sea and the Adjacent Onshore Areas. Springer, Dordrecht, The Netherlands, 103–114.
    [Google Scholar]
  26. Heeremans, M. & Faleide, J.I.
    2004. Late Carboniferous–Permian tectonics and magmatic activity in the Skagerrak, Kattegat and the North Sea. In: Wilson, M. ,  Neumann, E.-R. ,  Davies, G.R., Timmerman, M.J., Heeremans, M. & Larsen, B.T. (eds) Permo-Carboniferous Magmatism and Rifting in Europe. Geological Society, London, Special Publications, 223, 157–176, https://doi.org/10.1144/GSL.SP.2004.223.01.07
    [Google Scholar]
  27. Heeremans, M., Faleide, J.I. & Larsen, B.T.
    2004. Late Carboniferous–Permian of NW Europe: an introduction to a new regional map. In: Wilson, M. ,  Neumann, E.-R. ,  Davies, G.R., Timmerman, M.J., Heeremans, M. & Larsen, B.T. (eds) Permo-Carboniferous Magmatism and Rifting in Europe. Geological Society, London, Special Publications, 223, 75–88, https://doi.org/10.1144/GSL.SP.2004.223.01.04
    [Google Scholar]
  28. Holgate, N.E., Jackson, C.A.-L., Hampson, G.J. & Dreyer, T.
    2013. Sedimentology and sequence stratigraphy of the Middle–Upper Jurassic Krossfjord and Fensfjord formations, Troll Field, northern North Sea. Petroleum Geoscience, 19, 237, https://doi.org/10.1144/petgeo2012-039
    [Google Scholar]
  29. Holgate, N.E., Hampson, G.J., Jackson, C.A.-L. & Petersen, S.A.
    2014. Constraining uncertainty in interpretation of seismically imaged clinoforms in deltaic reservoirs, Troll field, Norwegian North Sea: Insights from forward seismic models of outcrop analogs. AAPG Bulletin, 98, 2629–2663, https://doi.org/10.1306/05281413152
    [Google Scholar]
  30. Hovland, M., Talbot, M.R., Qvale, H., Olaussen, S. & Aasberg, L.
    1987. Methane-related carbonate cements in pockmarks of the North Sea. Journal of Sedimentary Research, 57, 881–892, https://doi.org/10.1306/212F8C92-2B24-11D7-8648000102C1865D
    [Google Scholar]
  31. Jackson, C.A.L. & Lewis, M.M.
    2013. Physiography of the NE margin of the Permian Salt Basin: new insights from 3D seismic reflection data. Journal of the Geological Society, London, 170, 857–860, https://doi.org/10.1144/jgs2013-026
    [Google Scholar]
  32. Jackson, M.P.A. & Talbot, C.J.
    1986. External shapes, strain rates, and dynamics of salt structures. Geological Society of America Bulletin, 97, 305–323, https://doi.org/10.1130/0016-7606(1986)97<305:Essrad>2.0.CO;2
    [Google Scholar]
  33. Jackson, C.A.L., Grunhagen, H., Howell, J.A., Larsen, A.L., Andersson, A., Boen, F. & Groth, A.
    2010. 3D seismic imaging of lower delta-plain beach ridges: lower Brent Group, northern North Sea. Journal of the Geological Society, London, 167, 1225–1236, https://doi.org/10.1144/0016-76492010-053
    [Google Scholar]
  34. Jackson, C.A.L., Chua, S.T., Bell, R.E. & Magee, C.
    2013. Structural style and early stage growth of inversion structures: 3D seismic insights from the Egersund Basin, offshore Norway. Journal of Structural Geology, 46, 167–185, https://doi.org/10.1016/j.jsg.2012.09.005
    [Google Scholar]
  35. Jarsve, E.M., Maast, T.E., Gabrielsen, R.H., Faleide, J.I., Nystuen, J.P. & Sasier, C.
    2014. Seismic stratigraphic subdivision of the Triassic succession in the Central North Sea; integrating seismic reflection and well data. Journal of the Geological Society, London, 171, 353–374, https://doi.org/10.1144/jgs2013-056
    [Google Scholar]
  36. Jensen, L.N. & Schmidt, B.J.
    1993. Neogene uplift and erosion offshore south Norway: magnitude and consequences for hydrocarbon exploration in the Farsund Basin. In: Spencer, A.M. (ed.) Generation, Accumulation and Production of Europe's Hydrocarbons III. European Association of Petroleum Geoscientists, Special Publications, 3, 79–88.
    [Google Scholar]
  37. Johannessen, P.N. & Andsbjerg, J.
    1993. Middle to Late Jurassic basin evolution and sandstone reservoir distribution in the Danish Central Trough. In: Parker, J.R. (ed.) Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference. Geological Society, London, 271–283, https://doi.org/10.1144/0040271
    [Google Scholar]
  38. Jones, L. & Schumm, S.
    1999. Causes of avulsion: an overview. In: Smith, N.D. & Rogers, J. (eds) Fluvial sedimentology VI. International Association of Sedimentologists, Special Publications, 28, 171–178.
    [Google Scholar]
  39. Kallweit, R.S. & Wood, L.C.
    1982. The limits of resolution of zero-phase wavelets. Geophysics, 47, 1035–1046, https://doi.org/10.1190/1.1441367
    [Google Scholar]
  40. Kendall, C.G.S.C. & Schlager, W.
    1981. Carbonates and relative changes in sea level. Marine Geology, 44, 181–212, https://doi.org/10.1016/0025-3227(81)90118-3
    [Google Scholar]
  41. Klausen, T.G., Ryseth, A.E., Helland-Hansen, W., Gawthorpe, R. & Laursen, I.
    2015. Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd Formation, Norwegian Barents Sea. Marine and Petroleum Geology, 62, 102–122, https://doi.org/10.1016/j.marpetgeo.2015.02.004
    [Google Scholar]
  42. Klausen, T.G., Ryseth, A., Helland-Hansen, W. & Gjelberg, H.K.
    2016. Progradational and backstepping shoreface deposits in the Ladinian to Early Norian Snadd Formation of the Barents Sea. Sedimentology, 63, 893–916, https://doi.org/10.1111/sed.12242
    [Google Scholar]
  43. Kluesner, J.W., Silver, E.A. et al.
    2013. High density of structurally controlled, shallow to deep water fluid seep indicators imaged offshore Costa Rica. Geochemistry, Geophysics, Geosystems, 14, 519–539, https://doi.org/10.1002/ggge.20058
    [Google Scholar]
  44. Legler, B., Hampson, G.J., Jackson, C.A., Johnson, H.D., Massart, B.Y., Sarginson, M. & Ravnås, R.
    2014. Facies relationships and stratigraphic architecture of distal, mixed tide- and wave-influenced deltaic deposits: Lower Sego sandstone, western Colorado, USA. Journal of Sedimentary Research, 84, 605–625, https://doi.org/10.2110/jsr.2014.49
    [Google Scholar]
  45. Leinfelder, R.R.
    1994. Distribution of Jurassic reef types: a mirror of structural and environmental changes during breakup of Pangea. In: Embry, A.F., Beauchamp, B. & Glass, D.J. (eds) Pangea: Global Environments and Resources. Canadian Society of Petroleum Geologists Memoirs, 17, 677–700.
    [Google Scholar]
  46. Lewis, M.M., Jackson, C.A.L. & Gawthorpe, R.L.
    2013. Salt-influenced normal fault growth and forced folding: the Stavanger Fault System, North Sea. Journal of Structural Geology, 54, 156–173, https://doi.org/10.1016/j.jsg.2013.07.015
    [Google Scholar]
  47. Magee, C., Duffy, O.B., Purnell, K., Bell, R.E., Jackson, C.A.L. & Reeve, M.T.
    2016. Fault-controlled fluid flow inferred from hydrothermal vents imaged in 3D seismic reflection data, offshore NW Australia. Basin Research, 28, 299–318, https://doi.org/10.1111/bre.12111
    [Google Scholar]
  48. Mannie, A.S., Jackson, C.A.L. & Hampson, G.J.
    2014. Structural controls on the stratigraphic architecture of net-transgressive shallow-marine strata in a salt-influenced rift basin: Middle-to-Upper Jurassic Egersund Basin, Norwegian North Sea. Basin Research, 26, 675–700, https://doi.org/10.1111/bre.12058
    [Google Scholar]
  49. Mannie, A.S., Jackson, C.A.L., Hampson, G.J. & Fraser, A.J.
    2016. Tectonic controls on the spatial distribution and stratigraphic architecture of a net-transgressive shallow-marine synrift succession in a salt-influenced rift basin: Middle to Upper Jurassic, Norwegian Central North Sea. Journal of the Geological Society, London, 173, 901–915, https://doi.org/10.1144/jgs2016-033
    [Google Scholar]
  50. Marcon, Y., Ondréas, H., Sahling, H., Bohrmann, G. & Olu, K.
    2014. Fluid flow regimes and growth of a giant pockmark. Geology, 42, 63–66, https://doi.org/10.1130/g34801.1
    [Google Scholar]
  51. McKie, T. & Williams, B.
    2009. Triassic palaeogeography and fluvial dispersal across the northwest European Basins. Geological Journal, 44, 711–741, https://doi.org/10.1002/gj.1201
    [Google Scholar]
  52. Michelsen, O., Nielsen, L.H., Johannessen, P.N., Andsbjerg, J. & Surlyk, F.
    2003. The Jurassic of Denmark and Greenland: Jurassic lithostratigraphy and stratigraphic development onshore and offshore Denmark. In: Ineson, J.R. & Surlyk, F. (eds) The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin, 1, 147–216.
    [Google Scholar]
  53. Mogensen, T.E. & Jensen, L.N.
    1994. Cretaceous subsidence and inversion along the Tornquist Zone from Kattegat to the Egersund Basin. First Break, 12, 211–222, https://doi.org/10.3997/1365-2397.1994016
    [Google Scholar]
  54. Mogensen, T.E. & Korstgård, J.A.
    2003. Triassic and Jurassic transtension along part of the Sorgenfrei–Tornquist Zone in the Danish Kattegat. In: Ineson, J.R. & Surlyk, F. (eds) The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin, 1, 439–458.
    [Google Scholar]
  55. Montgomery, S.L.
    1996. Cotton Valley lime pinnacle reef play: Branton Field. AAPG Bulletin, 80, 617–629. https://doi.org/10.1306/64ED8854-1724-11D7-8645000102C1865D
    [Google Scholar]
  56. Moore, C.H.
    (ed.). 2001. Carbonate Reservoirs: Porosity, Evolution and Diagenesis in a Sequence Stratigraphic Framework. Developments in Sedimentology, 55. Elsevier, Amsterdam.
    [Google Scholar]
  57. Nielsen, L.H.
    2003. Late Triassic–Jurassic development of the Danish Basin and the Fennoscandian Border Zone, southern Scandinavia. In: Ineson, J.R. & Surlyk, F. (eds) The Jurassic of Denmark and Greenland. Geological Survey of Denmark and Greenland Bulletin, 1, 459–526.
    [Google Scholar]
  58. Olivarius, M. & Nielsen, L.H.
    2016. Triassic paleogeography of the greater eastern Norwegian–Danish Basin: Constraints from provenance analysis of the Skagerrak Formation. Marine and Petroleum Geology, 69, 168–182, https://doi.org/10.1016/j.marpetgeo.2015.10.008
    [Google Scholar]
  59. Otvos, E.G.
    2000. Beach ridges – definitions and significance. Geomorphology, 32, 83–108, https://doi.org/10.1016/S0169-555X(99)00075-6
    [Google Scholar]
  60. Patruno, S., Hampson, G.J. & Jackson, C.A.L.
    2015a. Quantitative characterisation of deltaic and subaqueous clinoforms. Earth-Science Reviews, 142, 79–119, https://doi.org/10.1016/j.earscirev.2015.01.004
    [Google Scholar]
  61. Patruno, S., Hampson, G.J., Jackson, C.A.L. & Dreyer, T.
    2015b. Clinoform geometry, geomorphology, facies character and stratigraphic architecture of a sand-rich subaqueous delta: Jurassic Sognefjord Formation, offshore Norway. Sedimentology, 62, 350–388, https://doi.org/10.1111/sed.12153
    [Google Scholar]
  62. Petersen, H., Nielsen, L., Bojesen-Koefoed, J.A., Mathiesen, A., Kristensen, L. & Dalhoff, F.
    2008. Evaluation of the Quality, Thermal Maturity and Distribution of Potential Source Rocks in the Danish Part of the Norwegian–Danish Basin. Geological Survey of Denmark and Greenland Bulletin, 16.
    [Google Scholar]
  63. Phillips, T.B., Jackson, C.A.L., Bell, R.E., Duffy, O.B. & Fossen, H.
    2016. Reactivation of intrabasement structures during rifting: A case study from offshore southern Norway. Journal of Structural Geology, 91, 54–73, https://doi.org/10.1016/j.jsg.2016.08.008
    [Google Scholar]
  64. Phillips, T.B., Jackson, C.A.L., Bell, R.E. & Duffy, O.B.
    2018. Oblique reactivation of lithosphere-scale lineaments controls rift physiography – the upper-crustal expression of the Sorgenfrei–Tornquist Zone, offshore southern Norway. Solid Earth, 9, 403–429, https://doi.org/10.5194/se-9-403-2018
    [Google Scholar]
  65. Posamentier, H.W.
    2004. Seismic geomorphology: imaging elements of depositional systems from shelf to deep basin using 3D seismic data: implications for exploration and development. In: Davies, J.R., Cartwright, J.A., Stewart, S.A., Lappin, M. & Underhill, J.R. (eds) 3D Seismic Technology: Application to the Exploration of Sedimentary Basins. Geological Society, London, Memoirs, 29, 11–24, https://doi.org/10.1144/GSL.MEM.2004.029.01.02
    [Google Scholar]
  66. Posamentier, H.W. & Kolla, V.
    2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73, 367–388, https://doi.org/10.1306/111302730367
    [Google Scholar]
  67. Posamentier, H. & Laurin, P.
    2005. Seismic geomorphology of oligocene to miocene carbonate buildups offshore Madura, Indonesia. SEG Technical Program Expanded Abstracts, 2005, 429–431.
    [Google Scholar]
  68. Prélat, A., Hodgson, D.M. & Flint, S.S.
    2009. Evolution, architecture and hierarchy of distributary deep-water deposits: a high-resolution outcrop investigation from the Permian Karoo Basin, South Africa. Sedimentology, 56, 2132–2154, https://doi.org/10.1111/j.1365-3091.2009.01073.x
    [Google Scholar]
  69. Purkis, S., Casini, G., Hunt, D. & Colpaert, A.
    2015. Morphometric patterns in Modern carbonate platforms can be applied to the ancient rock record: Similarities between Modern Alacranes Reef and Upper Palaeozoic platforms of the Barents Sea. Sedimentary Geology, 321, 49–69, https://doi.org/10.1016/j.sedgeo.2015.03.001
    [Google Scholar]
  70. Rattey, R.P. & Hayward, A.B.
    1993. Sequence stratigraphy of a failed rift system – the Middle Jurassic to Early Cretaceous basin evolution of the Central and Northern North Sea. In: Parker, J.R. (ed.) Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference. Geological Society, London, 215–249, https://doi.org/10.1144/0040215
    [Google Scholar]
  71. Rise, L., Bøe, R., Ottesen, D., Longva, O. & Olsen, H.A.
    2008. Postglacial depositional environments and sedimentation rates in the Norwegian Channel off southern Norway. Marine Geology, 251, 124–138, https://doi.org/10.1016/j.margeo.2008.02.012
    [Google Scholar]
  72. Romans, B.W., Fildani, A., Hubbard, S.M., Covault, J.A., Fosdick, J.C. & Graham, S.A.
    2011. Evolution of deep-water stratigraphic architecture, Magallanes Basin, Chile. Marine and Petroleum Geology, 28, 612–628, https://doi.org/10.1016/j.marpetgeo.2010.05.002
    [Google Scholar]
  73. Rosleff-Soerensen, B., Reuning, L., Back, S. & Kukla, P.
    2012. Seismic geomorphology and growth architecture of a Miocene barrier reef, Browse Basin, NW-Australia. Marine and Petroleum Geology, 29, 233–254, https://doi.org/10.1016/j.marpetgeo.2010.11.001
    [Google Scholar]
  74. Ruf, A., Simo, J.A. & Hughes, T.M.
    2008. Quantitative characterization of Oligocene–Miocene carbonate mound morphology from 3D seismic data: Applications to geologic modeling, East Java Basin, Indonesia. Paper presented at theInternational Petroleum Technology Conference, 3–5 December 2008, Kuala Lumpur, Malaysia.
    [Google Scholar]
  75. Ryseth, A., Fjellbirkeland, H., Osmundsen, I.K., SkålnesÅ & Zachariassen, E.
    1998. High-resolution stratigraphy and seismic attribute mapping of a fluvial reservoir: Middle Jurassic Ness Formation, Oseberg Field. AAPG Bulletin, 82, 1627–1651, https://doi.org/10.1306/1D9BCB5B-172D-11D7-8645000102C1865D
    [Google Scholar]
  76. Saller, A., Werner, K., Sugiaman, F., Cebastiant, A., May, R., Glenn, D. & Barker, C.
    2008. Characteristics of Pleistocene deep-water fan lobes and their application to an upper Miocene reservoir model, offshore East Kalimantan, Indonesia. AAPG Bulletin, 92, 919, https://doi.org/10.1306/03310807110
    [Google Scholar]
  77. Saqab, M.M. & Bourget, J.
    2016. Seismic geomorphology and evolution of early–mid Miocene isolated carbonate build-ups in the Timor Sea, North West Shelf of Australia. Marine Geology, 379, 224–245, https://doi.org/10.1016/j.margeo.2016.06.007
    [Google Scholar]
  78. Schlager, W.
    1981. The paradox of drowned reefs and carbonate platforms. Geological Society of America Bulletin, 92, 197, https://doi.org/10.1130/0016-7606(1981)92<197:TPODRA>2.0.CO;2
    [Google Scholar]
  79. 2000. Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems. In: Insalaco, E., Skelton, P.W. & Palmer, T.J. (eds) Carbonate Platform Systems: Components and Interactions. Geological Society, London, Special Publications, 178, 217–227, https://doi.org/10.1144/gsl.sp.2000.178.01.14
    [Google Scholar]
  80. Skjerven, J., Rijs, F. & Kalheim, J.
    1983. Late Palaeozoic to Early Cenozoic structural development of the south-southeastern Norwegian North Sea. In: Petroleum Geology of the Southeastern North Sea and the Adjacent Onshore Areas. Springer, Dordrecht, The Netherlands, 35–45.
    [Google Scholar]
  81. Slatt, R.M.
    (ed.). 2006. Stratigraphic Reservoir Characterization for Petroleum Geologists, Geophysicists, and Engineers. Origin, Recognition, Initiation, and Reservoir Quality. Developments in Petroleum Science, 61. Elsevier, Amsterdam.
    [Google Scholar]
  82. Somme, T.O., Martinsen, O.J. & Lunt, I.
    2013. Linking offshore stratigraphy to onshore paleotopography: The Late Jurassic–Paleocene evolution of the south Norwegian margin. Geological Society of America Bulletin, 125, 1164–1186, https://doi.org/10.1130/b30747.1
    [Google Scholar]
  83. Sørensen, S. & Tangen, O.H.
    1995. Exploration trends in marginal basins from Skagerrak to Stord. In: Hanslien, S. (ed.) Petroleum Exploration and Exploitation in Norway. Norwegian Petroleum Society, Special Publications, 4, 97–114.
    [Google Scholar]
  84. Sørensen, S., Morizot, H. & Skottheim, S.
    1992. A tectonostratigraphic analysis of the southeast Northern North Sea Basin. In: Larsen, R.M., Brekke, H., Larsen, B.T. & Talleraas, E. (eds) Structural and Tectonic Modelling and its Application to Petroleum Geology, Volume 1. Elsevier, Amsterdam, 19–42.
    [Google Scholar]
  85. Stewart, S.
    1999. Seismic interpretation of circular geological structures. Petroleum Geoscience, 5, 273–285, https://doi.org/10.1144/petgeo.5.3.273
    [Google Scholar]
  86. Thybo, H.
    2000. Crustal structure and tectonic evolution of the Tornquist Fan region as revealed by geophysical methods. Bulletin of the Geological Society of Denmark, 46, 145–160.
    [Google Scholar]
  87. Tvedt, A.B.M., Rotevatn, A., Jackson, C.A.L., Fossen, H. & Gawthorpe, R.L.
    2013. Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea. Journal of Structural Geology, 55, 1–20, https://doi.org/10.1016/j.jsg.2013.08.002
    [Google Scholar]
  88. Underhill, J.R. & Partington, M.A.
    1993. Jurassic thermal doming and deflation in the North Sea: implications of the sequence stratigraphic evidence. In: Parker, J.R. (ed.) Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference. Geological Society, London, 337–345, https://doi.org/10.1144/0040337
    [Google Scholar]
  89. Vail, P.R. & Todd, R.G.
    1981. Northern North Sea Jurassic unconformities, chronostratigraphy and sea-level changes from seismic stratigraphy. In: Illing, L.V. & Hobson, G.D. (eds) Petroleum Geology of the Continental Shelf of North-West Europe. Heyden, London, 216–235.
    [Google Scholar]
  90. Van Der Zwaan, G.J. & Jorissen, F.J.
    1991. Biofacial patterns in river-induced shelf anoxia. In: Tyson, R.V. & Pearson, T.H. (eds) Modern and Ancient Continental Shelf Anoxia. Geological Society, London, Special Publications, 58, 65, https://doi.org/10.1144/GSL.SP.1991.058.01.05
    [Google Scholar]
  91. van Wees, J.D., Stephenson, R.A. et al.
    2000. On the origin of the Southern Permian Basin, Central Europe. Marine and Petroleum Geology, 17, 43–59, https://doi.org/10.1016/S0264-8172(99)00052-5
    [Google Scholar]
  92. Vespremeanu-Stroe, A., Preoteasa, L., Zăinescu, F., Rotaru, S., Croitoru, L. & Timar-Gabor, A.
    2016. Formation of Danube delta beach ridge plains and signatures in morphology. Quaternary International, 415, 268–285, https://doi.org/10.1016/j.quaint.2015.12.060
    [Google Scholar]
  93. Vollset, J.
     & Doré, A.G. (eds). 1984. A Revised Triassic and Jurassic Lithostratigraphic Nomenclature for the Norwegian North Sea. Norwegian Petroleum Directorate Bulletin, 3.
    [Google Scholar]
  94. Widess, M.B.
    1973. How thin is a thin bed?Geophysics, 38, 1176–1180, https://doi.org/10.1190/1.1440403
    [Google Scholar]
  95. Zhang, J.-J., Wu, S.-H. et al.
    2016. Research on the architecture of submarine-fan lobes in the Niger Delta Basin, offshore West Africa. Journal of Palaeogeography, 5, 185–204, https://doi.org/10.1016/j.jop.2016.05.005
    [Google Scholar]
  96. Zhuo, H., Wang, Y., Shi, H., Zhu, M., He, M., Chen, W. & Li, H.
    2014. Seismic geomorphology, architecture and genesis of Miocene shelf sand ridges in the Pearl River Mouth Basin, northern South China Sea. Marine and Petroleum Geology, 54, 106–122, https://doi.org/10.1016/j.marpetgeo.2014.03.002
    [Google Scholar]
  97. Ziegler, P.A.
    1992. North Sea rift system. Tectonophysics, 208, 55–75, https://doi.org/10.1016/0040-1951(92)90336-5
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-056
Loading
/content/journals/10.1144/petgeo2018-056
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error