1887
Volume 27, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Historically, the continental Triassic successions of the Central North Sea have proven difficult to correlate, in part due to the poor palynomorph recovery associated with these sedimentary rocks. The existing framework for correlation is lithostratigraphic and, whilst this has proven effective in United Kingdom Continental Shelf (UKCS) Quad 30 where the mudstone members are well defined, elsewhere in the basin it is more problematic with confident identification of stratigraphic units becoming more difficult. Samples from 32 wells within UKCS Quads 22, 29 and 30, and Norwegian Quads 7, 15 and 16 underwent palynological analysis in which a processing method was utilized that was designed to concentrate palynomorph recovery from Triassic strata.

The results of this analysis allowed the proposal of a new zonal scheme consisting of eight biozones. These biozones can then be used to correlate the Triassic successions of the Central North Sea (CNS), helping to provide both clarity and age constraint on previously disputed stratigraphic units, particularly the J-members of the Skagerrak Formation. Within the correlation framework outlined here, the Julius Mudstone Member is shown to be a productive horizon for palynomorph recovery, representing a widespread swamp environment. Here, its lateral extent is defined which is an important consideration when correlating the Triassic stratigraphy of the CNS given that this member can compartmentalize potential reservoirs contained within these successions. The stratigraphic palynology outlined here also allows clarity on the J-member equivalence of some of the informal units previously described within Triassic successions of the CNS, including the Marnock Shale and Heron Shale.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2019-128
2020-04-14
2021-06-13
Loading full text...

Full text loading...

References

  1. Abbink, O.A., Van Konijnenburg-Van Cittert, J.H.A. and Visscher, H.
    2004. A sporomorph ecogroup model for the Northwest European Jurassic–Lower Cretaceousi: concepts and framework. Netherlands Journal of Geosciences, 83, 17–31, https://doi.org/10.1017/S0016774600020436
    [Google Scholar]
  2. Arche, A. and López-Gómez, J.
    2014. The Carnian Pluvial Event in Western Europe: new data from Iberia and correlation with the Western Neotethys and Eastern North America–NW Africa regions. Earth-Science Reviews, 128, 196–231, https://doi.org/10.1016/j.earscirev.2013.10.012
    [Google Scholar]
  3. Archer, S., Ward, S., Menad, S., Shahim, I., Grant, N., Sloan, H. and Cole, A.
    2010. The Jasmine discovery, Central North Sea, UKCS. Geological Society, London, Petroleum Geology Conference Series, 7, 225–243, https://doi.org/10.1144/0070225
    [Google Scholar]
  4. Balme, B.E.
    1995. Fossil in situ spores and pollen grains: an annotated catalogue. Review of Palaeobotany and Palynology, 87, 81–323, https://doi.org/10.1016/0034-6667(95)93235-X
    [Google Scholar]
  5. Baranyi, V., Miller, C.S., Ruffell, A., Hounslow, M.W. and Kürschner, W.M.
    2019. A continental record of the Carnian Pluvial Episode (CPE) from the Mercia Mudstone Group (UK): palynology and climatic implications. Journal of the Geological Society, London, 176, 149–166, https://doi.org/10.1144/jgs2017-150
    [Google Scholar]
  6. Benton, M.J., Bernardi, M. and Kinsella, C.
    2018. The Carnian Pluvial Episode and the origin of dinosaurs. Journal of the Geological Society, London, 1019–1026, https://doi.org/10.1144/jgs2018-049
    [Google Scholar]
  7. Cirilli, S.
    2010. Upper Triassic–lowermost Jurassic palynology and palynostratigraphy: a review. Geological Society, London, Special Publications, 334, 285–314, https://doi.org/10.1144/SP334.12
    [Google Scholar]
  8. Dal Corso, J., Mietto, P., Newton, R.J., Pancost, R.D., Preto, N., Roghi, G. and Wignall, P.B.
    2012. Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology, 40, 79–82, https://doi.org/10.1130/G32473.1
    [Google Scholar]
  9. Dal Corso, J., Gianolla, P. et al.
    2018. Multiple negative carbon-isotope excursions during the Carnian Pluvial Episode (Late Triassic). Earth-Science Reviews, 185, 732–750, https://doi.org/10.1016/j.earscirev.2018.07.004
    [Google Scholar]
  10. Deegan, C.E. and Scull, B.J.
    1977. A Standard Lithostratigraphic Nomenclature for the Central and Northern North Sea. Norwegian Petroleum Directorate Bulletin, 1.
    [Google Scholar]
  11. Dehbozorgi, A., Sajjadi, F. and Hashemi, H.
    2013. Middle Jurassic palynomorphs of the Dalichai Formation, central Alborz Ranges, northeastern Iran: paleoecological inferences. Science China Earth Sciences, 56, 2107–2115, https://doi.org/10.1007/s11430-013-4697-z
    [Google Scholar]
  12. Embry, A.F. and Suneby, L.B.
    1994. The Triassic–Jurassic boundary in the Sverdrup Basin, Arctic Canada. Canadian Society of Petroleum Geologists Memoirs, 17, 857–868.
    [Google Scholar]
  13. Farris, M.A.
    1999. Sedimentological Controls on Palynomorph Preservation, Triassic Red-Bed Facies, UK Central North Sea and West Midlands. Doctoral dissertation, Keele University, Keele, UK.
    [Google Scholar]
  14. Franz, M., Kustatscher, E., Heunisch, C., Niegel, S. and Röhling, H.G.
    2018. The Schilfsandstein and its flora; arguments for a humid mid-Carnian episode?Journal of the Geological Society, London, 176, 133–148, https://doi.org/10.1144/jgs2018-053
    [Google Scholar]
  15. Geiger, M.E. and Hopping, C.
    1968. Triassic stratigraphy of the southern North Sea Basin. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 254, 1–36.
    [Google Scholar]
  16. Goldsmith, P.J., Rich, B. and Standring, J.
    1995. Triassic correlation and stratigraphy in the south Central Graben, UK North Sea. Geological Society, London, Special Publications, 91, 123–143, https://doi.org/10.1144/GSL.SP.1995.091.01.07
    [Google Scholar]
  17. Goldsmith, P.J., Hudson, G. and van Veen, P.
    2003. Triassic. In: Evans, D., Graham, C., Armour, A. & Bathurst, P. (eds) The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea. Geological Society, London, 260–314.
    [Google Scholar]
  18. Gray, E.
    , Hartley, A. and Howell, J. 2019. The influence of stratigraphy and facies distribution on reservoir quality and production performance in the Triassic Skagerrak Formation of the UK and Norwegian Central North Sea. Geological Society, London, Special Publications, 494, https://doi.org/10.1144/SP494-2019-68
    [Google Scholar]
  19. Grey, K.
    1999. A Modified Palynological Preparation Technique for the Extraction of Large Neoproterozoic Acanthomorph Acritarchs and Other Acid-Soluble Microfossils. Western Australia Geological Survey Record, 1999/10.
    [Google Scholar]
  20. Herngreen, G.F.W.
    2005. Triassic Sporomorphs of NW Europe: Taxonomy, Morphology, and Ranges of Marker Species, with Remarks on Botanical Relationship and Ecology, and Comparison with Ranges in the Alpine Triassic. TNO-NITG, Utrecht, The Netherlands.
    [Google Scholar]
  21. Hochuli, P.A. and Vigran, J.O.
    2010. Climate variations in the Boreal Triassic – inferred from palynological records from the Barents Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 20–42, https://doi.org/10.1016/j.palaeo.2009.08.013
    [Google Scholar]
  22. Hodgson, N.A., Farnsworth, J. and Fraser, A.J.
    1992. Salt-related tectonics, sedimentation and hydrocarbon plays in the Central Graben, North Sea, UKCS. Geological Society, London, Special Publications, 67, 31–63, https://doi.org/10.1144/GSL.SP.1992.067.01.03
    [Google Scholar]
  23. Klaus, W.
    1960. Sporen der karnischen Stufe der ostalpinen Trias. Jahrbuch der Geologischen Bundesanstalt, 5, 107–183.
    [Google Scholar]
  24. Kürschner, W.M. and Herngreen, G.W.
    2010. Triassic palynology of central and northwestern Europe: a review of palynofloral diversity patterns and biostratigraphic subdivisions. Geological Society, London, Special Publications, 334, 263–283, https://doi.org/10.1144/SP334.11
    [Google Scholar]
  25. Kustatscher, E., van Konijnenburg-van Cittert, J.H. and Roghi, G.
    2010. Macrofloras and palynomorphs as possible proxies for palaeoclimatic and palaeoecological studies: A case study from the Pelsonian (Middle Triassic) of Kühwiesenkopf/Monte Prà della Vacca (Olang Dolomites, N-Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 71–80, https://doi.org/10.1016/j.palaeo.2009.07.001
    [Google Scholar]
  26. Lindström, S., Vosgerau, H., Piasecki, S., Nielsen, L.H., Dybkjær, K. and Erlström, M.
    2009. Ladinian palynofloras in the Norwegian-Danish Basin: a regional marker reflecting a climate change. Geological Survey of Denmark and Greenland Bulletin, 17, 21–24.
    [Google Scholar]
  27. Lindström, S., Erlström, M., Piasecki, S., Nielsen, L.H. and Mathiesen, A.
    2017. Palynology and terrestrial ecosystem change of the Middle Triassic to lowermost Jurassic succession of the eastern Danish Basin. Review of Palaeobotany and Palynology, 244, 65–95, https://doi.org/10.1016/j.revpalbo.2017.04.007
    [Google Scholar]
  28. Mädler, K.
    1964. Die geologische Verbreitung von Sporen und Pollen-in der deutschen Trias. Beihefte zum Geologischen Jahrbuch, Beiheft, 65, 1–131.
    [Google Scholar]
  29. Mangerud, G. and Rømuld, A.
    1991. Spathian-Anisian (Triassic) palynology at the Svalis Dome, southwestern Barents Sea. Review of Palaeobotany and Palynology, 70, 199–216, https://doi.org/10.1016/0034-6667(91)90002-K
    [Google Scholar]
  30. McKie, T.
    2014. Climatic and tectonic controls on Triassic dryland terminal fluvial system architecture, central North Sea. International Association of Sedimentologists Special Publications, 46, 19–57, https://doi.org/10.1002/9781118920435.ch2
    [Google Scholar]
  31. McKie, T. and Audretsch, P.
    2005. Depositional and structural controls on Triassic reservoir performance in the Heron Cluster, ETAP, Central North Sea. Geological Society, London, Petroleum Geology Conference Series, 6, 285–297, https://doi.org/10.1144/0060285
    [Google Scholar]
  32. McKie, T., Jolley, S.J. and Kristensen, M.B.
    2010. Stratigraphic and structural compartmentalization of dryland fluvial reservoirs: Triassic Heron Cluster, Central North Sea. Geological Society, London, Special Publications, 347, 165–198, https://doi.org/10.1144/SP347.11
    [Google Scholar]
  33. McKie, T. and Williams, B.
    2009. Triassic palaeogeography and fluvial dispersal across the northwest European Basins. Geological Journal, 44, 711–741, https://doi.org/10.1002/gj.1201
    [Google Scholar]
  34. Morbey, S.J. and Dunay, R.E.
    1978. Early Jurassic to Late Triassic dinoflagellate cysts and miospores. In: Thusu, B. (ed.) Distribution of Biostratigraphically Diagnostic Dinoflagellate Cysts and Miospores From the Northwest European Continental Shelf and Adjacent Areas. Continental Shelf Institute Publications, 100, 47–59.
    [Google Scholar]
  35. Mouritzen, C., Farris, M.A., Morton, A. and Matthews, S.
    2017. Integrated Triassic stratigraphy of the greater Culzean area, UK Central North Sea. Petroleum Geoscience, 24, 197–207, https://doi.org/10.1144/petgeo2017-039
    [Google Scholar]
  36. Ogg, J.G., Ogg, G. and Gradstein, F.M.
    2016. A Concise Geologic Time Scale: 2016. Elsevier, Amsterdam, 133–149.
    [Google Scholar]
  37. Orlowska-Zwolinska, T.
    1984. Palynostratigraphy of the Buntsandstein in sections of western Poland. Acta Palaeontologica Polonica, 29, 161–194.
    [Google Scholar]
  38. Paterson, N.W. and Mangerud, G.
    2015. Late Triassic (Carnian–Rhaetian) palynology of Hopen, Svalbard. Review of Palaeobotany and Palynology, 220, 98–119, https://doi.org/10.1016/j.revpalbo.2015.05.001
    [Google Scholar]
  39. 2017. Palynology and depositional environments of the Middle–Late Triassic (Anisian–Rhaetian) Kobbe, Snadd and Fruholmen formations, southern Barents Sea, Arctic Norway. Marine and Petroleum Geology, 86, 304–324, https://doi.org/10.1016/j.marpetgeo.2017.05.033
    [Google Scholar]
  40. 2019. A revised palynozonation for the Middle–Upper Triassic (Anisian–Rhaetian) Series of the Norwegian Arctic. Geological Magazine, 1–25, https://doi.org/10.1017/S0016756819000906
    [Google Scholar]
  41. Pautsch, M.E.
    1973. Upper Triassic spores and pollen from the Polish Carpathian Foreland. Micropaleontology, 129–149, https://doi.org/10.2307/1485161
    [Google Scholar]
  42. Retallack, G.
    1975. The life and times of a Triassic lycopod. Alcheringa, 1, 3–29, https://doi.org/10.1080/03115517508619477
    [Google Scholar]
  43. Roghi, G., Gianolla, P., Minarelli, L., Pilati, C. and Preto, N.
    2010. Palynological correlation of Carnian humid pulses throughout western Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology, 290, 89–106, https://doi.org/10.1016/j.palaeo.2009.11.006
    [Google Scholar]
  44. Ruffell, A., Dal Corso, J. and Benton, M.J.
    2018. Triassic extinctions and explosions. Geoscientist, 28, P10–P15, https://doi.org/10.1144/geosci2018-007
    [Google Scholar]
  45. Schrank, E.
    2010. Pollen and spores from the Tendaguru Beds, Upper Jurassic and Lower Cretaceous of southeast Tanzania: palynostratigraphical and paleoecological implications. Palynology, 34, 3–42, https://doi.org/10.1080/01916121003620106
    [Google Scholar]
  46. Simms, M.J. and Ruffell, A.H.
    1990. Climatic and biotic change in the late Triassic. Journal of the Geological Society, London, 147, 321–327, https://doi.org/10.1144/gsjgs.147.2.0321
    [Google Scholar]
  47. Traverse, A.
    2007. Paleopalynology. Springer, Dordrecht, The Netherlands, 615–669.
    [Google Scholar]
  48. Van Konijnenburg-Van Cittert, J.H.
    1971. In situ gymnosperm pollen from the Middle Jurassic of Yorkshire. Acta Botanica Neerlandica, 20, 1–97, https://doi.org/10.1111/j.1438-8677.1971.tb00688.x
    [Google Scholar]
  49. Vidal, G.
    1988. A palynological preparation method. Palynology, 12, 215–220, https://doi.org/10.1080/01916122.1988.9989345
    [Google Scholar]
  50. Vigran, J., Mangerud, G., Mørk, A., Bugge, T. and Weitschat, W.
    1998. Biostratigraphy and sequence stratigraphy of the Lower and Middle Triassic deposits from the Svalis Dome, central Barents Sea, Norway. Palynology, 22, 89–141, https://doi.org/10.1080/01916122.1998.9989505
    [Google Scholar]
  51. Vigran, J.O., Mangerud, G., Mørk, A., Worsley, D. and Hochuli, P.A.
    2014. Palynology and geology of the Triassic succession of Svalbard and the Barents Sea (Vol. 14). Norges geologiske undersokelse.
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2019-128
Loading
/content/journals/10.1144/petgeo2019-128
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error