1887
Volume 27, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Injected CO streams may have geochemical reactivity to different rock types in a CO storage complex depending on solubility and formation water chemistry. The Precipice Sandstone and Evergreen Formation are a low-salinity reservoir–seal pair in the Surat Basin, Australia, targeted for potential CO storage. The kinetic geochemical CO reactivity of different rock facies from three regions were predicted over 30 and 1000 year time periods. No material CO mineral trapping in the quartz-rich Precipice Sandstone reservoir was predicted, owing to the low rock reactivity. Predicted CO mineral trapping in the Evergreen Formation was more variable due to different amounts of more reactive feldspars, clays, calcite and siderite. Predicted mineral trapping as siderite and ankerite was between 0.03 and 8.4 kg m CO, and mainly depends on chlorite and plagioclase content. Predicted pH was between 5 and 7.5 after 1000 years. Pyrite precipitation was also predicted with SO present in the injectate. QEMSCAN and SEM-EDS (scanning electron microscopy and energy-dispersive spectroscopy) spot imaging of samples from the seal containing natural fractures filled by siderite, pyrite, clays, ankerite, calcite, barite and apatite represent a natural analogue for natural mineral trapping. These are in good agreement with our model predictions. This study suggests that, from a geochemical perspective, the Precipice Sandstone is a suitable storage reservoir, whereas mineral trapping would occur in the overlying Evergreen Formation.

Additional model inputs, characterization and model images, and an excel file of QEMSCAN mineral and porosity components, are available at https://doi.org/10.6084/m9.figshare.c.5395393

This article is part of the Geoscience for CO storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-106
2021-05-27
2024-04-27
Loading full text...

Full text loading...

References

  1. Alpermann, T., Dietrich, M.
    and Ostertag-Henning, C. 2016. Mineral trapping of a CO2/H2S mixture by hematite under initially dry hydrothermal conditions. International Journal of Greenhouse Gas Control, 51, 346–356, https://doi.org/10.1016/j.ijggc.2016.05.029
    [Google Scholar]
  2. APLNG
    2013. Australia Pacific LNG Upstream Phase 1. Reedy Creek Aquifer Injection Management Plan – Precipice Sandstone. Report Q-4255-95-MP-004. Australia Pacific LNG.
    [Google Scholar]
  3. Babaahmadi, A., Sliwa, R.
    and Esterle, J. 2016. Post Jurassic shortening in the western Surat Basin relative to underlying basement depth and faulting. The APPEA Journal, 56, 597–597, https://doi.org/10.1071/AJ15103
    [Google Scholar]
  4. Bachu, S.
    and Gunter, W.D. 2005. Overview of acid-gas injection operations in Western Canada. In: Rubin, E.S., Keith, D.W., Gilboy, C.F., Wilson, M., Morris, T., Gale, J. and Thambimuthu, K. (eds) Greenhouse Gas Control Technologies 7. Elsevier Science, Oxford, UK, 443–448.
    [Google Scholar]
  5. Bachu, S., Gunter, W.D.
    and Perkins, E.H. 1994. Aquifer disposal of CO2 – hydrodynamic and mineral trapping. Energy Conversion and Management, 35, 269–279, https://doi.org/10.1016/0196-8904(94)90060-4
    [Google Scholar]
  6. Bacon, D.H., Sass, B.M., Bhargava, M., Sminchak, J.
    and Gupta, N. 2009. Reactive transport modeling of CO2 and SO2 injection into deep saline formations and their effect on the hydraulic properties of host rocks. Energy Procedia, 1, 3283–3290, https://doi.org/10.1016/j.egypro.2009.02.114
    [Google Scholar]
  7. Baublys, K.A., Hamilton, S.K., Golding, S.D., Vink, S.
    and Esterle, J. 2015. Microbial controls on the origin and evolution of coal seam gases and production waters of the Walloon Subgroup; Surat Basin, Australia. International Journal of Coal Geology, 147–148, 85–104, https://doi.org/10.1016/j.coal.2015.06.007
    [Google Scholar]
  8. Bertier, P., Swennen, R., Laenen, B., Lagrou, D.
    and Dreesen, R. 2006. Experimental identification of CO2–water–rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium). Journal of Geochemical Exploration, 89, 10–14, https://doi.org/10.1016/j.gexplo.2005.11.005
    [Google Scholar]
  9. Bethke, C.M.
    and Yeakel, S. 2012. The Geochemist's Workbench (Version 9.0): Reaction Modeling Guide. Aqueous Solutions, Champaign, IL.
    [Google Scholar]
  10. Bianchi, V., Zhou, F., Pistellato, D., Martin, M., Boccardo, S.
    and Esterle, J. 2018. Mapping a coastal transition in braided systems: an example from the Precipice Sandstone, Surat Basin. Australian Journal of Earth Sciences, 65, 483–502, https://doi.org/10.1080/08120099.2018.1455156
    [Google Scholar]
  11. Bickle, M., Chadwick, A., Huppert, H.E., Hallworth, M.
    and Lyle, S. 2007. Modelling carbon dioxide accumulation at Sleipner: implications for underground carbon storage. Earth and Planetary Science Letters, 255, 164–176, https://doi.org/10.1016/j.epsl.2006.12.013
    [Google Scholar]
  12. Bickle, M.J., Kampman, N.
    and Wigley, M. 2013. Natural analogues. Reviews in Mineralogy and Geochemistry , 77, 15–71.
    [Google Scholar]
  13. Bolourinejad, P.
    and Herber, R. 2015. Chemical effects of sulfur dioxide co-injection with carbon dioxide on the reservoir and caprock mineralogy and permeability in depleted gas fields. Applied Geochemistry, 59, 11–22, https://doi.org/10.1016/j.apgeochem.2015.03.003
    [Google Scholar]
  14. Bradshaw, B.E., Spencer, L.K. et al.
    2011. An assessment of Queensland's CO2 geological storage prospectivity – the Queensland CO2 Geological Storage Atlas. Energy Procedia, 4, 4583–4590, https://doi.org/10.1016/j.egypro.2011.02.417
    [Google Scholar]
  15. Carroll, S.A., McNab, W.W., Dai, Z.
    and Torres, S.C. 2013. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions. Environmental Science and Technology, 47, 252–261, https://doi.org/10.1021/es301269k
    [Google Scholar]
  16. Chopping, C.
    and Kaszuba, J.P. 2012. Supercritical carbon dioxide–brine–rock reactions in the Madison Limestone of Southwest Wyoming: an experimental investigation of a sulfur-rich natural carbon dioxide reservoir. Chemical Geology, 322–323, 223–236, https://doi.org/10.1016/j.chemgeo.2012.07.004
    [Google Scholar]
  17. Daniel, R.F.
    2005. Carbon Dioxide Seal Capacity Study, Vlaming Sub-Basin, Perth Basin, Western Australia, Australia. CO2CRC Report RPT05-0044.
    [Google Scholar]
  18. Dawson, G.K.W., Sidiq, H. et al.
    2013. Review of Laboratory-Scale Geochemical and Geomehcanical Experiments Simulating Geosequestration of CO2 in Sandstone, and Associated Modelling Studies, ANLEC Project 3-110-0101. Australian Low Emissions Coal Research and Development, Canberra, ACT, Australia.
    [Google Scholar]
  19. Dawson, G.K.W., Pearce, J.K., Biddle, D. and Golding, S.D.
    2015. Experimental mineral dissolution in Berea Sandstone reacted with CO2 or SO2–CO2 in NaCl brine under CO2 sequestration conditions. Chemical Geology, 399, 87–97, https://doi.org/10.1016/j.chemgeo.2014.10.005
    [Google Scholar]
  20. Delany, J.M. and Lundeen, S.R.
    1989. The LLNL Thermodynamic Database. Lawrence Livermore National Laboratory Report UCRL-21658.
    [Google Scholar]
  21. de Visser, E., Hendriks, C., Barrio, M., Mølnvik, M.J., de Koeijer, G., Liljemark, S. and Le Gallo, Y.
    2008. Dynamis CO2 quality recommendations. International Journal of Greenhouse Gas Control, 2, 478–484, https://doi.org/10.1016/j.ijggc.2008.04.006
    [Google Scholar]
  22. Duan, Z. and Sun, R.
    2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000  bar. Chemical Geology, 193, 257–271, https://doi.org/10.1016/S0009-2541(02)00263-2
    [Google Scholar]
  23. Farquhar, S.M., Dawson, G.K.W., Esterle, J.S. and Golding, S.D.
    2013. Mineralogical characterisation of a potential reservoir system for CO2 sequestration in the Surat Basin. Australian Journal of Earth Sciences, 60, 91–110, https://doi.org/10.1080/08120099.2012.752406
    [Google Scholar]
  24. Farquhar, S.M., Pearce, J.K., Dawson, G.K.W., Golab, A., Kirste, D., Biddle, D. and Golding, S.D.
    2015. A fresh approach to investigating CO2 storage: experimental CO2–water–rock interactions in a freshwater reservoir system. Chemical Geology, 399, 98–122, https://doi.org/10.1016/j.chemgeo.2014.10.006
    [Google Scholar]
  25. Fischer, S., Liebscher, A., De Lucia, M. and Hecht, L.
    2013. Reactivity of sandstone and siltstone samples from the Ketzin pilot CO2 storage site – Laboratory experiments and reactive geochemical modeling. Environmental Earth Sciences, 70, 3687–3708, https://doi.org/10.1007/s12665-013-2669-4
    [Google Scholar]
  26. Förster, A., Schöner, R. et al.
    2010. Reservoir characterization of a CO2 storage aquifer: the Upper Triassic Stuttgart Formation in the Northeast German Basin. Marine and Petroleum Geology, 27, 2156–2172, https://doi.org/10.1016/j.marpetgeo.2010.07.010
    [Google Scholar]
  27. Garnett, A., Underschultz, J. and Ashworth, P.
    2019. Project Report: Scoping Study for Material Carbon Abatement via Carbon Capture and Storage. University of Queensland, Brisbane, Australia.
    [Google Scholar]
  28. Golab, A., Arena, A. et al.
    2015. Milestone 2.9: Final Report of Digital Core Analysis Results for Plug Samples From West Wandoan-1 Well. Report for ANLEC R&D. FEI-Lithicon.
    [Google Scholar]
  29. Golding, S.D., Uysal, I.T., Bolhar, R., Boreham, C.J., Dawson, G.K.W., Baublys, K.A. and Esterle, J.S.
    2013. Carbon dioxide-rich coals of the Oaky Creek area, central Bowen Basin: a natural analogue for carbon sequestration in coal systems. Australian Journal of Earth Sciences, 60, 125–140, https://doi.org/10.1080/08120099.2012.750627
    [Google Scholar]
  30. Golding, S.D., Dawson, G.K.W. et al.
    2016. Authigenic Carbonates in the Great Artesian Basin as Natural Analogues for Mineralisation Trapping. CO2CRC Report for ANLEC R&D, ANLEC Project 7-1011-0189.
    [Google Scholar]
  31. Gonzalez, S., Harfoush, A., La Croix, A., Underschultz, J. and Garnett, A.
    2019. Regional Static Model. University of Queensland Surat Deep Aquifer Appraisal Project –Supplementary Detailed Report. University of Queensland, Brisbane, Australia.
    [Google Scholar]
  32. Green, P.M., Hoffmann, K.L., Brain, T.J. and Gray, A.R.G.
    1997. The Surat and Bowen Basins, South-East Queensland, Queensland Minerals and Energy Review Series. Queensland Department of Mines and Energy, Brisbane, Australia.
    [Google Scholar]
  33. Grigorescu, M.
    2011. Jurassic Groundwater Hydrochemical Types, Surat Basin, Queensland – A Carbon Geostorage Prospective. Queensland Geological Record 2011/05.
    [Google Scholar]
  34. Haberlah, D., Strong, C., Pirrie, D., Rollinson, G.K., Gottlieb, P., Botha, P.P.W.S.K and Butcher, A.R.
    2011. Automated petrography applications in quaternary science. Quaternary Australasia, 28, 3–12, http://hdl.handle.net/10072/45844
    [Google Scholar]
  35. Haese, R., Frank, A., Grigorescu, M., Horner, K.N.M.K.D., Schacht, U. and Tenthorey, E.
    2016. Geochemical Impacts and Monitoring of CO2 Storage in Low Salinity Aquifers 3-1110-0088. CO2CRC Report RPT15-5328 for ANLEC R&D.
    [Google Scholar]
  36. Harfoush, A., Pearce, J. and Wolhuter, A.
    2019. Core Data Analysis. University of Queensland Surat Deep Aquifer Appraisal Project (UQ-SDAAP). University of Queensland, Brisbane, Australia.
    [Google Scholar]
  37. Hayes, P., Nicol, C. et al.
    2020. Enhancing geological and hydrogeological understanding of the Precipice Sandstone aquifer of the Surat Basin, Great Artesian Basin, Australia, through model inversion of managed aquifer recharge datasets. Hydrogeology Journal, 28, 175–192, https://doi.org/10.1007/s10040-019-02079-9
    [Google Scholar]
  38. He, J., La Croix, A.D., Gonzalez, S., Pearce, J., Ding, W., Underschultz, J.R. and Garnett, A.
    2021. Quantifying and modelling the effects of pre-existing basement faults on folding of overlying strata in the Surat Basin, Australia: Implications for fault seal potential. Journal of Petroleum Science and Engineering, 198, 108207, https://doi.org/10.1016/j.petrol.2020.108207
    [Google Scholar]
  39. Hedayati, M., Wigston, A., Wolf, J.L., Rebscher, D. and Niemi, A.
    2018. Impacts of SO2 gas impurity within a CO2 stream on reservoir rock of a CCS pilot site: experimental and modelling approach. International Journal of Greenhouse Gas Control, 70, 32–44, https://doi.org/10.1016/j.ijggc.2018.01.003
    [Google Scholar]
  40. Hellevang, H., Haile, B.G. and Tetteh, A.
    2016. Experimental study to better understand factors affecting the CO2 mineral trapping potential of basalt. Greenhouse Gases: Science and Technology, 7, 143–157, https://doi.org/10.1002/ghg.1619
    [Google Scholar]
  41. Higgs, K.E., Funnell, R.H. and Reyes, A.G.
    2013. Changes in reservoir heterogeneity and quality as a response to high partial pressures of CO2 in a gas reservoir, New Zealand. Marine and Petroleum Geology, 48, 293–322, https://doi.org/10.1016/j.marpetgeo.2013.08.005
    [Google Scholar]
  42. Higgs, K.E., Haese, R.R., Golding, S.D., Schacht, U. and Watson, M.
    2015. The Pretty Hill Formation as a natural analogue for CO2 storage; an investigation of mineralogical and isotopic changes associated with sandstones exposed to low, intermediate and high CO2 concentrations over geological time. Chemical Geology, 399, 36–64, https://doi.org/10.1016/j.chemgeo.2014.10.019
    [Google Scholar]
  43. Hodgkinson, J. and Grigorescu, M.
    2013. Background research for selection of potential geostorage targets – case studies from the Surat Basin, Queensland. Australian Journal of Earth Sciences, 60, 71–89, https://doi.org/10.1080/08120099.2012.662913
    [Google Scholar]
  44. Hovorka, S.D., Doughty, C., Benson, S.M., Pruess, K. and Knox, P.R.
    2004. The impact of geological heterogeneity on CO2 storage in brine formations: a case study from the Texas Gulf Coast. Geological Society, London, Special Publications , 233, 147–163, https://doi.org/10.1144/GSL.SP.2004.233.01.10
    [Google Scholar]
  45. Kaszuba, J.P., Janecky, D.R. and Snow, M.G.
    2003. Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200  bars: implications for geologic sequestration of carbon. Applied Geochemistry, 18, 1065–1080, https://doi.org/10.1016/S0883-2927(02)00239-1
    [Google Scholar]
  46. Kaszuba, J.P., Navarre-Sitchler, A., Thyne, G., Chopping, C. and Meuzelaar, T.
    2011. Supercritical carbon dioxide and sulfur in the Madison Limestone: A natural analog in southwest Wyoming for geologic carbon-sulfur co-sequestration. Earth and Planetary Science Letters, 309, 131–140, https://doi.org/10.1016/j.epsl.2011.06.033
    [Google Scholar]
  47. Kharaka, Y.K., Cole, D.R., Hovorka, S.D., Gunter, W.D., Knauss, K.G. and Freifeld, B.M.
    2006. Gas–water–rock interactions in Frio Formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology, 34, 577–580, https://doi.org/10.1130/G22357.1
    [Google Scholar]
  48. Kirste, D., Pearce, J. and Golding, S.
    2017. Parameterizing geochemical models: do kinetics of calcite matter?Procedia Earth and Planetary Science, 17, 606–609, https://doi.org/10.1016/j.proeps.2016.12.162
    [Google Scholar]
  49. Köhler, S.J., Dufaud, F. and Oelkers, E.H.
    2003. An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C. Geochimica et Cosmochimica Acta, 67, 3583–3594, https://doi.org/10.1016/S0016-7037(03)00163-7
    [Google Scholar]
  50. Korsch, R.J., Totterdell, J.M., Fomin, T. and Nicoll, M.G.
    2009. Contractional structures and deformational events in the Bowen, Gunnedah and Surat Basins, eastern Australia. Australian Journal of Earth Sciences, 56, 477–499, https://doi.org/10.1080/08120090802698745
    [Google Scholar]
  51. La Croix, A.D., Harfoush, A., Rodger, I. and Underschultz, J.R.
    2019a. Sector-Scale Static Reservoir Modelling of the Basin-Centre in the Surat Basin. University of Queensland Surat Deep Aquifer Appraisal Project (UQ-SDAAP). University of Queensland, Brisbane, Australia.
    [Google Scholar]
  52. La Croix, A.D., Wang, J., He, J., Hannaford, C., Bianchi, V., Esterle, J.S. and Underschultz, J.R.
    2019b. Widespread nearshore and shallow marine deposition within the Lower Jurassic Precipice Sandstone and Evergreen Formation in the Surat Basin, Australia. Marine and Petroleum Geology, 109, 760–790, https://doi.org/10.1016/j.marpetgeo.2019.06.048
    [Google Scholar]
  53. La Croix, A.D., Wang, J. and Underschultz, J.
    2019c. Integrated Facies Analysis of the Precipice Sandstone and Evergreen Formation in the Surat Basin. University of Queensland Surat Deep Aquifer Appraisal Project –Supplementary Detailed Report. University of Queensland, Brisbane, Australia.
    [Google Scholar]
  54. La Croix, A.D., Harfoush, A., Rodger, I., Gonzalez, S., Underschultz, J.R., Hayes, P. and Garnett, A.
    2020a. Reservoir modelling notional CO2 injection into the Precipice Sandstone and Evergreen Formation in the Surat Basin, Australia. Petroleum Geoscience, 26, 127–140, https://doi.org/10.1144/petgeo2019-058
    [Google Scholar]
  55. La Croix, A.D., He, J., Gonzalez, S., Wang, J., Bianchi, V., Esterle, J.S. and Underschultz, J.R.
    2020b. Early Jurassic paleoenvironments in the Surat Basin, Australia – marine incursion into Eastern Gondwana. Sedimentology, 67, 457–485https://doi.org/10.1111/sed.12649
    [Google Scholar]
  56. Lasaga, A.C.
    1995. Fundamental approaches in describing mineral dissolution and precipitation rates. Reviews in Mineralogy and Geochemistry, 31, 23–86.
    [Google Scholar]
  57. Li, D. and Jiang, X.
    2014. A numerical study of the impurity effects of nitrogen and sulfur dioxide on the solubility trapping of carbon dioxide geological storage. Applied Energy, 128, 60–74, https://doi.org/10.1016/j.apenergy.2014.04.051
    [Google Scholar]
  58. Lowson, R.T., Brown, P.L., Comarmond, M.C.J. and Rajaratnam, G.
    2007. The kinetics of chlorite dissolution. Geochimica et Cosmochimica Acta, 71, 1431–1447, https://doi.org/10.1016/j.gca.2006.12.008
    [Google Scholar]
  59. Martin, M.A., Wakefield, M., Bianchi, V., Esterle, J. and Zhou, F.
    2018. Evidence for marine influence in the Lower Jurassic Precipice Sandstone, Surat Basin, eastern Australia. Australian Journal of Earth Sciences, 65, 75–91, https://doi.org/10.1080/08120099.2018.1402821
    [Google Scholar]
  60. Matter, J.M., Stute, M. et al.
    2016. Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science, 352, 1312, https://doi.org/10.1126/science.aad8132
    [Google Scholar]
  61. Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S. and Aiken, T.
    2010. Geological storage of CO2 in saline aquifers – A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4, 659–667, https://doi.org/10.1016/j.ijggc.2009.12.011
    [Google Scholar]
  62. Palandri, J.L. and Kharaka, Y.K.
    2004. A Compilation of Rate Parameters of Water–Mineral Interaction Kinetics for Application to Geochemical Modeling. United States Geological Survey Open-File Report, 2004-1068.
    [Google Scholar]
  63. Palandri, J.L., Rosenbauer, R.J. and Kharaka, Y.K.
    2005. Ferric iron in sediments as a novel CO2 mineral trap: CO2–SO2 reaction with hematite. Applied Geochemistry, 20, 2038–2048, https://doi.org/10.1016/j.apgeochem.2005.06.005
    [Google Scholar]
  64. Pearce, J. and Dawson, G.
    2018. Experimental determination of impure CO2 alteration of calcite cemented cap-rock, and long term predictions of cap-rock reactivity. Geosciences, 8, 241, https://doi.org/10.3390/geosciences8070241
    [Google Scholar]
  65. Pearce, J.K., Kirste, D.M., Dawson, G.K.W., Farquhar, S.M., Biddle, D., Golding, S.D. and Rudolph, V.
    2015. SO2 impurity impacts on experimental and simulated CO2–water–reservoir rock reactions at carbon storage conditions. Chemical Geology, 399, 65–86, https://doi.org/10.1016/j.chemgeo.2014.10.028
    [Google Scholar]
  66. Pearce, J.K., Golab, A., Dawson, G.K.W., Knuefing, L., Goodwin, C. and Golding, S.D.
    2016. Mineralogical controls on porosity and water chemistry during O2–SO2–CO2 reaction of CO2 storage reservoir and cap-rock core. Applied Geochemistry, 75, 152–168, https://doi.org/10.1016/j.apgeochem.2016.11.002
    [Google Scholar]
  67. Pearce, J., Dawson, G. and Golding, S.
    2018. Interaction of dissolved CO2, SOx and NOx with the Moolayember Formation underlying the Precipice Sandstone. Presented at the14th Greenhouse Gas Control Technologies Conference, 21–28 October 2018, Melbourne, Australia, https://doi.org/10.2139/ssrn.3366101
    [Google Scholar]
  68. Pearce, J., Underschultz, J. and La Croix, A.
    2019a. Mineralogy, Geochemical CO2–Water–Rock Reactions and Associated Characterisation. University of Queensland Surat Deep Aquifer Appraisal Project (UQ-SDAAP). University of Queensland, Brisbane, Australia.
    [Google Scholar]
  69. Pearce, J.K., Croix, A.D.L., Brink, F., Honari, V., Gonzalez, S., Harfoush, A. and Underschultz, J.R.
    2019b. CO2–water–rock predictions from aquifer and oil field drill core data: the Precipice Sandstone-Evergreen Formation CO2 storage reservoir–seal pair. ASEG Extended Abstracts, 2019, 1–5, https://doi.org/10.1080/22020586.2019.12073162
    [Google Scholar]
  70. Pearce, J.K., Dawson, G.K.W., Golab, A., Knuefing, L., Sommacal, S., Rudolph, V. and Golding, S.D.
    2019c. A combined geochemical and μCT study on the CO2 reactivity of Surat Basin reservoir and cap-rock cores: porosity changes, mineral dissolution and fines migration. International Journal of Greenhouse Gas Control, 80, 10–24, https://doi.org/10.1016/j.ijggc.2018.11.010
    [Google Scholar]
  71. Pearce, J.K., Dawson, G.K.W., Sommacal, S. and Golding, S.D.
    2019d. Experimental and modelled reactions of CO2 and SO2 with core from a low salinity aquifer overlying a target CO2 storage complex. Geosciences, 9, 513, https://doi.org/10.3390/geosciences9120513
    [Google Scholar]
  72. Pearce, J.K., Kirste, D.M., Dawson, G.K.W., Rudolph, V. and Golding, S.D.
    2019e. Geochemical modelling of experimental O2–SO2–CO2 reactions of reservoir, cap-rock, and overlying cores. Applied Geochemistry, 109, 104401, https://doi.org/10.1016/j.apgeochem.2019.104400
    [Google Scholar]
  73. Pearce, J.K., La Croix, A.D., Underschultz, J.R. and Golding, S.D.
    2020. Long term reactivity of CO2 in a low salinity reservoir–seal complex. Applied Geochemistry, 114, 104529, https://doi.org/10.1016/j.apgeochem.2020.104529
    [Google Scholar]
  74. Pham, V.T.H., Lu, P., Aagaard, P., Zhu, C. and Hellevang, H.
    2011. On the potential of CO2–water–rock interactions for CO2 storage using a modified kinetic model. International Journal of Greenhouse Gas Control, 5, 1002–1015, https://doi.org/10.1016/j.ijggc.2010.12.002
    [Google Scholar]
  75. Pirrie, D., Butcher, A.R., Power, M.R., Gottlieb, P. and Miller, G.L.
    2004. Rapid quantitative mineral and phase analysis using automated scanning electron microscopy (QemSCAN); potential applications in forensic geoscience. Geological Society, London, Special Publications , 232, 123–136, https://doi.org/10.1144/GSL.SP.2004.232.01.12
    [Google Scholar]
  76. Porter, R.T.J., Fairweather, M., Pourkashanian, M. and Woolley, R.M.
    2015. The range and level of impurities in CO2 streams from different carbon capture sources. International Journal of Greenhouse Gas Control, 36, 161–174, https://doi.org/10.1016/j.ijggc.2015.02.016
    [Google Scholar]
  77. Prommer, H., Rathi, B., Donn, M., Siade, A., Wendling, L., Martens, E. and Patterson, B.
    2016. Geochemical Response to Reinjection. Final Report. CSIRO, Australia.
    [Google Scholar]
  78. Rodger, I., La Croix, A.D., Underschultz, J.R. and Garnett, A.J.
    2019. Transition Zone Behaviour Test Models. University of Queensland Surat Deep Aquifer Appraisal Project (UQ-SDAAP). University of Queensland, Brisbane, Australia.
    [Google Scholar]
  79. Saif, T., Lin, Q., Butcher, A.R., Bijeljic, B. and Blunt, M.J.
    2017. Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM. Applied Energy, 202, 628–647, https://doi.org/10.1016/j.apenergy.2017.05.039
    [Google Scholar]
  80. Shukla, R., Ranjith, P., Haque, A. and Choi, X.
    2010. A review of studies on CO2 sequestration and caprock integrity. Fuel, 89, 2651–2664, https://doi.org/10.1016/j.fuel.2010.05.012
    [Google Scholar]
  81. Steefel, C.I.
    2001. GIMRT, Version 1.2: Software for Modeling Multicomponent, Multidimensional Reactive Transport. User's Guide. Lawrence Livermore National Laboratory, Livermore, CA.
    [Google Scholar]
  82. Stephenson, M.H., Ringrose, P., Geiger, S., Bridden, M. and Schofield, D.
    2019. Geoscience and decarbonization: current status and future directions. Petroleum Geoscience, 25, 501–508, https://doi.org/10.1144/petgeo2019-084
    [Google Scholar]
  83. Sundal, A. and Hellevang, H.
    2019. Using reservoir geology and petrographic observations to improve CO2 mineralization estimates: examples from the johansen formation, North Sea, Norway. Minerals, 9, 671, https://doi.org/10.3390/min9110671
    [Google Scholar]
  84. Talman, S.
    2015. Subsurface geochemical fate and effects of impurities contained in a CO2 stream injected into a deep saline aquifer: What is known. International Journal of Greenhouse Gas Control, 40, 267–291, https://doi.org/10.1016/j.ijggc.2015.04.019
    [Google Scholar]
  85. Underschultz, J., Boreham, C., Dance, T., Stalker, L., Freifeld, B., Kirste, D. and Ennis-King, J.
    2011. CO2 storage in a depleted gas field: An overview of the CO2CRC Otway Project and initial results. International Journal of Greenhouse Gas Control, 5, 922–932, https://doi.org/10.1016/j.ijggc.2011.02.009
    [Google Scholar]
  86. Underschultz, J.R., Pasini, P., Grigorescu, M. and de Souza, T.L.
    2016. Assessing aquitard hydraulic performance from hydrocarbon migration indicators: Surat and Bowen basins, Australia. Marine and Petroleum Geology, 78, 712–727, https://doi.org/10.1016/j.marpetgeo.2016.09.025
    [Google Scholar]
  87. Waldmann, S. and Gaupp, R.
    2016. Grain-rimming kaolinite in Permian Rotliegend reservoir rocks. Sedimentary Geology, 335, 17–33, https://doi.org/10.1016/j.sedgeo.2016.01.016
    [Google Scholar]
  88. Wang, J., La Croix, A.D., Gonzalez, S., He, J. and Underschultz, J.R.
    2019. Sequence stratigraphic analysis of the Lower Jurassic Precipice and Evergreen Formations in the Surat Basin, Australia: implications for the architecture of reservoirs and seals for CO2 storage. Marine and Petroleum Geology, 102, 829–843, https://doi.org/10.1016/j.marpetgeo.2019.01.038
    [Google Scholar]
  89. Watson, M. and Gibson-Poole, C.M.
    2005. Reservoir selection for optimised geological injection and storage of carbon dioxide: a combined geochemical and stratigraphic perspective. Presented at theFourth Annual Conference on Carbon Capture and Sequestration DOE/NETL, 2–5 May 2005, Alexandria, Virginia, USA.
    [Google Scholar]
  90. Wdowin, M., Tarkowski, R. and Franus, W.
    2014. Determination of changes in the reservoir and cap rocks of the Chabowo Anticline caused by CO2–brine–rock interactions. International Journal of Coal Geology, 130, 79–88, https://doi.org/10.1016/j.coal.2014.05.010
    [Google Scholar]
  91. Wei, N., Li, X., Wang, Y., Zhu, Q., Liu, S., Liu, N. and Su, X.
    2015. Geochemical impact of aquifer storage for impure CO2 containing O2 and N2: Tongliao field experiment. Applied Energy, 145, 198–210, https://doi.org/10.1016/j.apenergy.2015.01.017
    [Google Scholar]
  92. White, A.F.
    1995. Chemical weathering rates of silicate minerals in soils. Reviews in Mineralogy and Geochemistry, 31, 407–461.
    [Google Scholar]
  93. Wilke, F.D.H., Vásquez, M., Wiersberg, T., Naumann, R. and Erzinger, J.
    2012. On the interaction of pure and impure supercritical CO2 with rock forming minerals in saline aquifers: an experimental geochemical approach. Applied Geochemistry, 27, 1615–1622, https://doi.org/10.1016/j.apgeochem.2012.04.012
    [Google Scholar]
  94. Wolhuter, A., Garnett, A. and Underschultz, J.
    2019. Notional Injection Site Identification Report. University of Queensland Surat Deep Aquifer Appraisal Project – Supplementary Detailed Report. University of Queensland, Brisbane, Australia.
    [Google Scholar]
  95. Xu, T.F., Apps, J.A. and Pruess, K.
    2005. Mineral sequestration of carbon dioxide in a sandstone-shale system. Chemical Geology, 217, 295–318, https://doi.org/10.1016/j.chemgeo.2004.12.015
    [Google Scholar]
  96. Xu, T.F., Apps, J.A., Pruess, K. and Yamamoto, H.
    2007. Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation. Chemical Geology, 242, 319–346, https://doi.org/10.1016/j.chemgeo.2007.03.022
    [Google Scholar]
  97. Ziabakhsh-Ganji, Z. and Kooi, H.
    2014. Sensitivity of the CO2 storage capacity of underground geological structures to the presence of SO2 and other impurities. Applied Energy, 135, 43–52, https://doi.org/10.1016/j.apenergy.2014.08.073
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-106
Loading
/content/journals/10.1144/petgeo2020-106
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error