1887
Volume 27, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Carbon capture, utilization and storage (CCUS) is considered a major part of the Portuguese strategy for reducing CO emissions. Some industrial sectors, the most prominent being the cement sector, require the implementation of CO storage to reach carbon neutrality by 2050. This paper presents and characterizes the areas with potential for CO storage in mainland Portugal. The lithostratigraphic and tectonic frameworks of the onshore and offshore basins are presented; a site screening process was conducted, based on basin- and regional-scale assessments, resulting in the definition of eight possible storage clusters, seven of which are offshore. The storage capacity was estimated for those clusters, with a central (P) value of 7.09 Gt; however, the most interesting locations are in the Lusitanian Basin (West Iberian Margin), both onshore and offshore, as they present high capacity and are located favourably in relation to the industrial CO emitters. Considering only the potential sites of this basin, their storage capacities are greater than 3 Gt CO, of which 260 Mt are onshore.

This article is part of the Geoscience for CO storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-123
2021-04-29
2024-04-26
Loading full text...

Full text loading...

References

  1. Alves, T.M. and Cunha, T.A
    . 2018. A phase of transient subsidence, sediment bypass and deposition of regressive–transgressive cycles during the breakup of Iberia and Newfoundland. Earth and Planetary Science Letters, 484, 168–183, https://doi.org/10.1016/j.epsl.2017.11.054
    [Google Scholar]
  2. Alves, T.M., GawthorpeR.L. Hunt, D.W. and MonteiroJ.H.
    , 2002. Jurassic tectono-sedimentary evolution of the Northern Lusitanian Basin (offshore Portugal). Marine and Petroleum Geology, 19, 727–754, https://doi.org/10.1016/S0264-8172(02)00036-3
    [Google Scholar]
  3. Alves, T.M., Manuppella, G., Gawthorpe, R.L., Hunt, D.W. and Monteiro, J.H
    . 2003. The depositional evolution of diapir- vs. fault-bounded rift basins: examples from the Lusitanian Basin of West Iberia. Sedimentary Geology, 162, 273–303, https://doi.org/10.1016/S0037-0738(03)00155-6
    [Google Scholar]
  4. Alves, T.M., Moita, C., Sandnes, F., Cunha, T., Monteiro, J.H. and Pinheiro, L.M
    . 2006. Mesozoic–Cenozoic evolution of North Atlantic continental-slope basins: The Peniche basin, western Iberian margin. AAPG Bulletin, 90, 31–60, https://doi.org/10.1306/08110504138
    [Google Scholar]
  5. Alves, T.M., Moita, C., Cunha, T., Ullnaess, M., Myklebust, R., Monteiro, J.H. and Manuppella, G
    . 2009. Diachronous evolution of Late Jurassic–Cretaceous continental rifting in the northeast Atlantic (west Iberian margin). Tectonics, 28, TC4003, https://doi.org/10.1029/2008TC002337
    [Google Scholar]
  6. APA
    2019. Roadmap for Carbon Neutrality 2050 (RNC2050) – Long-Term Strategy for Carbon Neutrality of the Portuguese Economy by 2050 . Portugese Environment Agency, Amadora, Portugal.
    [Google Scholar]
  7. Archie, G.E
    . 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146, 54–62, https://doi.org/10.2118/942054-G
    [Google Scholar]
  8. Azerêdo, A.C., Duarte, L.V., Henriques, M.H. and Manuppela, G.
    2003. Da dinâmica continental no Triásico aos mares do Jurássico Inferior e Médio. Cadernos de Geologia, Instituto Geológico e Mineiro.
    [Google Scholar]
  9. Barbosa, B.P.
    1981. Notícia Explicativa da Folha 16-C (Vagos). Carta Geológica de Portugal, escala 1:50  000 . Serviços Geológicos, Lisbon.
    [Google Scholar]
  10. Bernardes, L.F., Carneiro, J. and de Abreu, M.P
    . 2013. CO2 hydrates as a climate change mitigation strategy: definition of stability zones in the Portuguese deep offshore. International Journal of Global Warming, 5, 135–151, http://doi.org/10.1504/IJGW.2013.053495
    [Google Scholar]
  11. Bernardes, L., Carneiro, J., Madureira, P., Brandão, F. and Roque, C
    . 2015. Determination of priority study areas for coupling CO2 storage and CH4 gas hydrates recovery in the Portuguese offshore area. Energies, 8, 10  276–10  292, https://doi.org/10.3390/en80910276
    [Google Scholar]
  12. Boavida, D., Carneiro, J. et al.
    2013. Planning CCS development in the West Mediterranean. Energy Procedia, 37, 3212–3220, https://doi.org/10.1016/j.egypro.2013.06.208
    [Google Scholar]
  13. Boillot, G., Auxietre, J.L., Dunand, J.P., Dupeuble, P.A. and Mauffret, A.
    1979. Acoustic stratigraphy and structure of the oceanic crust. American Geophysical Union Maurice Ewing Series , 3, 138–153.
    [Google Scholar]
  14. Capdevila, R. and Mougenot, D.
    1998. Pre-Mesozoic basement of the western Iberian continental margin and its place in the Variscan belt. In: Boillot, G., Winterer, E. L. et al. . (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Volume 103. Ocean Drilling Program, College Station, TX, 3–12.
    [Google Scholar]
  15. Carneiro, J.F. and Mesquita, P
    . 2014. Definition of CCS Provinces with multi-criteria and least cost path analysis. Energy Procedia, 63, 2645–2654, https://doi.org/10.1016/j.egypro.2014.11.287
    [Google Scholar]
  16. Carneiro, J.F., Boavida, D. and Silva, R
    . 2011. First assessment of sources and sinks for carbon capture and geological storage in Portugal. International Journal of Greenhouse Gas Control, 5, 538–548, https://doi.org/10.1016/j.ijggc.2010.08.002
    [Google Scholar]
  17. Carneiro, J.F, Martinez, R., Suaréz, I., Zarhloule, Y. and Rimi, A
    . 2015. Injection rates and cost estimates for CO2 storage in the west Mediterranean region. Environmental Earth Sciences, 73, 2951–2962, http://doi.org/10.1007/s12665-015-4029-z
    [Google Scholar]
  18. Carvalho, J., Matias, H., TorresL., Manupella, G., Pereira, R. and Mendes-Victor, L.
    2005. The structural and sedimentary evolution of the Arruda and Lower Tagus sub-basins, Portugal. Marine and Geology, 22, 427–453, http://doi.org/10.1016/j.marpetgeo.2004.11.004
    [Google Scholar]
  19. Cavanagh, A., Wilkinson, M. and Haszeldine, S.
    2020. Bridging the Gap, Storage Resource Assessment Methodologies. EU H2020 STRATEGY CCUS Project 837754.
    [Google Scholar]
  20. Chappelier, D.
    1992. Well Logging in Hydrogeology. A.A. Balkema, Rotterdam, The Netherlands.
    [Google Scholar]
  21. CO2CRC
    2008. Storage Capacity Estimation, Site Selection and Characterisation for CO2 Storage Projects. CO2CRC Report RPT08-1001. Cooperative Research Centre for Greenhouse Gas Technologies, Canberra.
    [Google Scholar]
  22. CSLF
    2007. Phase II Final Report from the Task Force for Review and Identification of Standards for CO2 Storage Capacity Measurement. Task Force on CO2 Storage Capacity Estimation for the Technical Group (TG) of the Carbon Sequestration Leadership Forum (CSLF).
  23. Cunha, T.
    2008. Gravity Anomalies, Flexure and the Thermo-Mechanical Evolution of the West Iberia Margin and its Conjugate of Newfoundland. PhD thesis, University of Oxford, Oxford, UK.
    [Google Scholar]
  24. DGEG
    2020. Energy-Emission Scenarios up to 2050 Supporting the National Hydrogen Strategy of Portugal. Directorate-General for Energy and Geology, Division of Research and Renewables, Portugal.
    [Google Scholar]
  25. Dias, R. P
    . 2001. Neotectónica da Região do Algarve. PhD thesis, University of Lisbon, Lisbon, Portugal.
    [Google Scholar]
  26. Dinis, J. L., Rey, J., Cunha, P. P., Callapez, P. and Pena dos Reis, R.
    2008. Stratigraphy and allogenic controls of the western Portugal Cretaceous: an updated synthesis. Cretaceous Research, 29, 772–780, https://doi.org/10.1016/j.cretres.2008.05.027
    [Google Scholar]
  27. E-PRTR
    2017. European Pollutant Release and Transfer Register (E-PRTR), https://prtr.eea.europa.eu/#/home [accessed 11 March 2019].
  28. EU ETS
    2018. European Union Emission Trading System – European Union Transaction Log, https://ec.europa.eu/clima/ets/oha.do [accessed 2 December 2019].
  29. Goodman, A., Hakala, A. et al.
    2011. U.S. DOE methodology for the development of geologic storage potential for carbon dioxide at the national and regional scale. International Journal of Greenhouse Gas Control, 5, 952–965, https://doi.org/10.1016/j.ijggc.2011.03.010
    [Google Scholar]
  30. GPEP
    1986. The Petroleum Potential of Portugal. Gabinete para a Pesquisa e Exploração de Petróleos (GPEP), Lisbon.
    [Google Scholar]
  31. IEA
    2017. Energy Technology Perspectives 2017: Catalysing Energy Technology Transformations. International Energy Agency (IEA), Paris, https://doi.org/10.1787/energy_tech-2017-en
    [Google Scholar]
  32. 2018. Data and Statistics – CO2 Emissions by Sector in Portugal. International Energy Agency (IEA), Paris, https://www.iea.org/data-and-statistics?country=PORTUGAL&fuel=CO2%20emissions&indicator=CO2BySector
  33. Inverno, C.M.C., Manuppella, G., Zbyszewski, G., Pais, J. and Ribeiro, M.L
    . 1993. Notícia Explicativa da Folha 42-C Santiago do Cacém. Carta Geológica de Portugal na Escala 1/50  000 . Serviços Geológicos de Portugal, Lisbon.
    [Google Scholar]
  34. Keys, W.S.
    1990. Borehole Geophysics Applied to Groundwater Investigations. United States Geological Survey Techniques of Water-Resources Investigations, Book 2, ch. E2.
    [Google Scholar]
  35. Kullberg, J.C.
    2000. Evolução tectónica mesozóica da Bacia Lusitaniana. PhD thesis, University of Lisbon, Lisbon, Portugal.
    [Google Scholar]
  36. Leinfelder, R.R. and Wilson, R.C.L
    . 1998. Third-order sequences in an Upper Jurassic rift-related second-order sequence, central Lusitanian Basin, Portugal. SEPM Special Publications , 60, 507–525.
    [Google Scholar]
  37. Lemos de Sousa, M., Correia da Silva, Z.C., Miranda, A. and Rodrigues, C.F.
    2007. The COSEQ Pilot Project: CO2 Sequestration in Douro Coalfield Meta-Anthracites (NW Portugal). Presented at theInternational Seminar on Perspectives for Near-term CCS Deployment & Capacity Building for Emerging Economies, 17–19 October 2007, Porto Alegre, Brazil.
    [Google Scholar]
  38. Lopes, F.C., Cunha, P.P. and Le Gall, B
    . 2006. Cenozoic seismic stratigraphy and tectonic evolution of the Algarve margin (offshore Portugal, southwestern Iberian Peninsula). Marine Geology, 231, 1–36, https://doi.org/10.1016/j.margeo.2006.05.007
    [Google Scholar]
  39. Machado, S., Sampaio, J., Carvalho, J., Dias, R.P., Costa, A. and Oliveira, J.T.
    2007. Armazenamento de CO2 em aquíferos salinos – Hipóteses para Portugal. Presented atA Fossil Fuel on the Road to Sustainability: Conference Cycle ‘Energy and Society’, 7 November 2007, Lisbon, Portugal.
    [Google Scholar]
  40. Marques da Silva, M.A.
    1990. Hidrogeologia del Sistema Multiacuífero Cretácico del Bajo Vouga – Aveiro (Portugal). PhD thesis, University of Barcelona, Barcelona, Spain.
    [Google Scholar]
  41. 1992. Camadas guia do Cretácico de Aveiro e sua importância hidrogeológica. Geociências: Revista da Universidade de Aveiro, 7, 111–124.
    [Google Scholar]
  42. Martinez, R.
    2013. WP4 Final Report. COMET deliverable 3.4.
    [Google Scholar]
  43. Martinez, R., Suárez, I. and Le Nindre, Y.M.
    2010. Site Selection Criteria. COMET deliverable 3.1.
    [Google Scholar]
  44. Masson, D.G., Cartwright, J.A., Pinheiro, L.M., Whitmarsh, R.B. and Beslier, M.O
    . 1994. Compressional deformation at the ocean–continent transition in the NE Atlantic. Journal of the Geological Society, London, 151, 607–613, https://doi.org/10.1144/gsjgs.151.4.0607
    [Google Scholar]
  45. Matias, H.
    2007. Hydrocarbon Potential of the Offshore Algarve Basin. PhD thesis, University of Lisbon, Lisbon, Portugal.
    [Google Scholar]
  46. Mauffret, A., Mougenot, D., Miles, P.R. and Malod, J.A
    . 1989. Cenozoic deformation and Mesozoic abandoned spreading centre in the Tagus Abyssal Plain (west of Portugal): results of a multichannel seismic survey. Canadian Journal of Earth Sciences, 26, 1101–1123, https://doi.org/10.1139/e89-095
    [Google Scholar]
  47. Moita, C., Pronk, E. and Pacheco, J.
    1996. Porto Basin: Seismic Interpretation Report.
    [Google Scholar]
  48. Moita, P., Berrezueta, E. et al.
    2020. Experiments on mineral carbonation of CO2 in gabbros from the Sines massif – first results from project InCarbon. Comunicações Geológicas, 107, 91–96.
    [Google Scholar]
  49. Murillas, J., Mougenot, D., Boillot, G., Comas, M.C., Banda, E. and Mauffret, A
    . 1990. Structure and evolution of the Galicia Interior Basin (Atlantic western Iberian continental margin). Tectonophysics, 184, 297–319, https://doi.org/10.1016/0040-1951(90)90445-E
    [Google Scholar]
  50. Palin, C.
    1976. Une Série Détritique Terrigène. Les ‘Grés de Silves’: Trias et Lias Inférieur du Portugal. Serviços Geológicos de Portugal, Lisbon.
    [Google Scholar]
  51. Pereira, R. and Alves, T.M
    . 2012. Tectono-stratigraphic signature of multiphased rifting on divergent margins (deep-offshore southwest Iberia, North Atlantic). Tectonics, 31, TC4001, https://doi.org/10.1029/2011TC003001
    [Google Scholar]
  52. Pereira, N., Carneiro, J.F., Araújo, A., Bezzeghoud, M. and Borges, J
    . 2014. Seismic and structural geology constraints to the selection of CO2 storage sites – The case of the onshore Lusitanian basin, Portugal. Journal of Applied Geophysics, 102, 21–38, https://doi.org/10.1016/j.jappgeo.2013.12.001
    [Google Scholar]
  53. Pinheiro, L.M., Wilson, R.C.L., Pena dos Reis, R., Whitmarsh, R.B. and Ribeiro, A.
    1996. The western Iberia margin: a geophysical and geological overview. In: Whitmarsh, R.B., Sawyer, D.S., Klaus, A. and Masson, D.G. (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Volume 149. Ocean Drilling Program, College Station, TX, 3–23.
    [Google Scholar]
  54. Ramos, A. Fernández, O., Terrinha, P., Muñoz, J.A. and ArnaizÁ
    , 2020. Paleogeographic evolution of a segmented oblique passive margin: the case of the SW Iberian margin. International Journal of Earth Sciences,109, 1871–1895, https://doi.org/10.1007/s00531-020-01878-w
    [Google Scholar]
  55. Rasmussen, E.S., Lomholt, S., Andersen, C. and Vejbæk, O.V
    . 1998. Aspects of the structural evolution of the Lusitanian Basin in Portugal and the shelf and slope area offshore Portugal. Tectonophysics, 300, 199–225, https://doi.org/10.1016/S0040-1951(98)00241-8
    [Google Scholar]
  56. Ribeiro, A., Antunes, M.T. et al.
    1979. Introduction à la Géologie generale du Portugal. Serviços Geológicos de Portugal, Lisbon.
    [Google Scholar]
  57. RibeiroC. and Terrinha, P
    . 2007. Formation, deformation and chertification of systematic clastic dykes in a differentially lithified carbonate multilayer. SW Iberia, Algarve Basin, Lower Jurassic. Sedimentary Geology, 196, 201–215, https://doi.org/10.1016/j.sedgeo.2006.06.001
    [Google Scholar]
  58. Rocha, R.B. and Soares, A.F.
    1984. Algumas reflexões sobre a sedimentação jurássica na orla mesocenozóica ocidental de Portugal. Memórias e Noticias, 97, 133–142.
    [Google Scholar]
  59. Romão, I.S., Gando-Ferreira, L.M., da Silva, M.M.V.G. and Zevenhoven, R
    . 2016. CO2 sequestration with serpentinite and metaperidotite from Northeast Portugal. Minerals Engineering, 94, 104–114, https://doi.org/10.1016/j.mineng.2016.05.009
    [Google Scholar]
  60. Roque, C.
    2007. Tectonostratigrafia do Cenozóico das Margens continentais Sul e Sudoeste portuguesas: um modelo de correlação sismostratigráfica. PhD thesis, University of Lisbon, Lisbon, Portugal.
    [Google Scholar]
  61. Schlumberger
    2009. Log Interpretation Charts. Schlumberger, Sugar Land, TX.
    [Google Scholar]
  62. Seixas, J., Fortes, P. et al.
    2015. CO2 Capture and Storage in Portugal: A Bridge to A Low Carbon Economy. FCT-UNL, Lisbon.
    [Google Scholar]
  63. Taylor, A.M., Gowland, S., LearyS., KeoghK.J. and Martinius, A.W
    . 2014. Stratigraphical correlation of the Late Jurassic Lourinhã Formation in the Consolação Sub-basin (Lusitanian Basin), Portugal. Geological Journal, 49, 143–162, https://doi.org/10.1002/gj.2505
    [Google Scholar]
  64. Terrinha, P.
    1998. Structural Geology and Tectonic Evolution of the Algarve Basin, South Portugal. PhD thesis, University of London, London, UK.
    [Google Scholar]
  65. Terrinha, P., Ribeiro, C., Kullberg, J. C., Lopes, C., Rocha, R. and Ribeiro, A
    . 2002. Compressive episodes and faunal isolation during rifting, Southwest Iberia. The Journal of Geology, 110, 101–113, https://doi.org/10.1086/324206
    [Google Scholar]
  66. Terrinha, P., Pinheiro, L. et al.
    2003. Tsunamigenic–seismogenic structures, neotectonics, sedimentary processes and slope instability on the southwest Portuguese Margin. Marine Geology, 195, 153-176, https://doi.org/10.1016/S0025-3227(02)00682-5
    [Google Scholar]
  67. Terrinha, P., Rocha, R. et al.
    2006. A Bacia Algarvia: Estratigrafia, paleogeografia e tectónica. In: Dias, R., Araújo, A., Terrinha, P. and Kullberg, J.C. (eds) Geologia de Portugal no Contexto da Ibéria. University of Évora, Évora, Portugal, 247–316.
    [Google Scholar]
  68. Terrinha, P., Kullberg, J.C. et al.
    2019a. Rifting of the Southwest and West Iberia continental margins. In: Quesada, C. and Oliveira, J. (eds) The Geology of Iberia: A Geodynamic Approach. Regional Geology Reviews. Springer, Cham, Switzerland, 251–283, https://doi.org/10.1007/978-3-030-11295-0_6
    [Google Scholar]
  69. Terrinha, P., Ramos, A. et al.
    2019b. The Alpine Orogeny in the West and Southwest Iberia margins. In: Quesada, C. and Oliveira, J. (eds) The Geology of Iberia: A Geodynamic Approach. Regional Geology Reviews. Springer, Cham, Switzerland, 487–505, https://doi.org/10.1007/978-3-030-11295-0_11
    [Google Scholar]
  70. UNFCCC
    2015. Adoption of the Paris Agreement—Proposal by the President; UNFCCC – United Nations Framework Convention on Climate Change: Paris, France, 2015.
    [Google Scholar]
  71. Vangkilde-Pedersen, T., Anthonsen, K.L. et al.
    2009. Assessing European capacity for geological storage of carbon dioxide – the EU GeoCapacity project. In: Gale, J., Herzog, H. and Braitsch, J. (eds) Proceedings of the 9th International Conference on Greenhouse Gas Control Technologies 2008 (GHGT-9). Energy Procedia, 1, 2663–2670.
    [Google Scholar]
  72. Wilson, R.C.L
    . 1988. Mesozoic development of the Lusitanian Basin, Portugal. Revista de la Sociedad Geológica de Espana, 1, 393–407.
    [Google Scholar]
  73. Wilson, R.C.L., Hiscott, R.N., Willis, M.G. and Gradstein, F.M.
    1989. The Lusitanian basin of west-central Portugal: Mesozoic and Tertiary tectonic, stratigraphy, and subsidence history. In: Tankard, A.J. and Balkwill, H.R. (eds) Extensional tectonics and stratigraphy of the North Atlantic margins, AAPG Memoir . 40, 341–361, https://doi.org/10.1306/M46497C22
    [Google Scholar]
  74. Winsauer, W.O., Shearin, H.M., Jr, Masson, P.H. and Williams, H.
    1952. Resistivity of brine saturated sands in relation to pore geometry. AAPG Bulletin, 36, 253–277.
    [Google Scholar]
  75. Witt, W.G.
    1977. Stratigraphy of the Lusitanian Basin. Shell Prospex Port, Algés, Portugal.
    [Google Scholar]
  76. Wyllie, M.R.J., Gregory, A.R. and Gardner, G.H.F
    . 1958. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23, 459–493, https://doi.org/10.1190/1.1438493
    [Google Scholar]
  77. Zitellini, N., Chierici, F., Sartori, R. and Torelli, L.
    1999. The tectonic source of the 1755 Lisbon earthquake and tsunami. Annali di Geofisica, 42, 49–55.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-123
Loading
/content/journals/10.1144/petgeo2020-123
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error