1887
Volume 1 Number 4
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

Evaluating the stability state of a rock slope is a complex problem, mainly due to the lack of knowledge of the real state of the rock mass. Geophysical methods appear to be useful for investigating the deep discontinuity pattern, which may be poorly interpreted from surface observations. However, they have seldom been applied on steep rock slopes. The aim of this study is to test seismic tomography and ground‐penetrating radar on near‐vertical cliffs, and assess the quality of information that they can provide when investigating the characteristics of the fracture pattern inside the massif.

The test site is located in the Chartreuse massif, 20 km north‐west of Grenoble, France. It is a 15 m high limestone cliff, characterized by one main near‐vertical discontinuity set, including some wide open fractures.

Seismic tomography has been conducted between the vertical free surface and the plateau above, along three parallel profiles. Results show strong velocity gradients, from 800 to 3500 m/s. Some triangular low‐velocity zones can be correlated with field observation of open fractures, but different tests on synthetic models and on real data show that the method is too sensitive to such heterogeneous conditions to provide accurate information on the fracture pattern.

Ground‐penetrating radar surveys have also been acquired along vertical profiles on the cliff. We used three different antennae with centre frequencies of 35, 120 and 500 MHz. The penetration depth varied from 10 m (500 MHz) to about 20 m (35 MHz). The main reflectors are near‐vertical and most of them can be correlated with fractures observed on the site. The reflectivity varies strongly along one single reflector, indicating changes in the aperture and/or filling characteristics.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2003007
2003-08-01
2020-05-30
Loading full text...

Full text loading...

References

  1. AleottiP. and ChowduryR.1999. Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and Environment58, 21–44.
    [Google Scholar]
  2. BensonA.K.1995. Applications of ground‐penetrating radar in assessing some geological hazards: examples of groundwater contamination, faults, cavities. Journal of Applied Geophysics33, 177–193.
    [Google Scholar]
  3. CancelliA. and CrostaG.1993. Hazard and risk assessment in rock‐fall prone areas. In: Risk and Reliability in Ground Engineering (ed. S.Bo ), pp. 177–190. Thomas Teldford, London.
    [Google Scholar]
  4. CrostaG.1997. Evaluating rock mass geometry from photographic images. Rock Mechanics and Rock Engineering30, 35–58.
    [Google Scholar]
  5. DemanetD.2000. Tomographie 2D et 3D à partir de mesures géophysiques en surface et en forage. PhD thesis, University of Liège.
  6. DemanetD., RenardyF., VannesteK., JongmansD., CamelbeeckT. and MeghraouiM.2001. The use of geophysical prospecting for imaging active faults in the Roer graben, Belgium. Geophysics66, 78–89.
    [Google Scholar]
  7. DerobertX. and AbrahamO.2000. GPR and seismic imaging in a gypsum quarry. Journal of Applied Geophysics45, 157–169.
    [Google Scholar]
  8. DinesK. and LyttleJ.1979. Computerized geophysical tomography. Proceedings of the IEEE67, 1065–1073.
    [Google Scholar]
  9. Dussauge‐PeisserC.2002. Evaluation de l’aléa éboulement rocheux; Développements méthodologiques et approches expérimentales. PhD thesis, University of Grenoble.
  10. GrégoireC.2001. Fracture characterisation by ground‐penetrating radar. PhD thesis, Katholieke University of Leuven.
  11. HackR.2000. Geophysics for slope stability. Surveys in Geophysics21, 423–448.
    [Google Scholar]
  12. HoK., LeroiE. and RobertsB.2000. Quantitative risk assessment: application, myths and future direction. In: GeoEng2000, Vol. 1. Technomic Publishing Co., Melbourne.
    [Google Scholar]
  13. HoekE. and BrayJ.W.1981. Rock Slope Engineering.Elsevier Science Publishing Co.
    [Google Scholar]
  14. HudsonJ.A.1992. Rock Engineering System: Theory and Practice.High Plain Press (JAH).
    [Google Scholar]
  15. Interreg_IIC
    Interreg_IIC . 2001. Prévention des mouvements de versant et des instabilités de falaise ‐ Groupe Falaise ‐ Confrontation des méthodes d’étude des éboulements rocheux dans l’arc alpin.Programme Interreg IIc, Méditerranée occidentale et Alpes latines. Internal report, Grenoble.
    [Google Scholar]
  16. IvansonS.1987. Crosshole transmission tomography. In: Seismic Tomography with Applications in Global Seismology and Exploration Geophysics (ed. G.Nolet), pp. 159–188. Reidel Publishing Company.
    [Google Scholar]
  17. JaboyedoffM., PhilippossianF., MaminM., MarroC. and RouillerJ.D.1996. Distribution spatiale des discontinuités dans une falaise. Approche statistique et probabiliste, Final Report PNR31, VDF, Zürich.
    [Google Scholar]
  18. JongmansD., Hemroulle, P., Demanet, D., Renardy, F. and Vanbrabant, Y.2000. Application of 2D electrical and seismic tomography techniques for investigating landslides. European Journal of Environmental and Engineering Geophysics5, 75–89.
    [Google Scholar]
  19. LagerD.L. and LyttleR.J.1977. Determining a subsurface electromagnetic profile from high frequency measurements by applying reconstruction technique algorithms. Radio Science12, 249–260.
    [Google Scholar]
  20. LanzE., MaurerH. and GreenA.G.1998. Refraction tomography over a buried waste disposal site. Geophysics63, 1414–1433.
    [Google Scholar]
  21. MazzoccolaD. and HudsonJ.A.1996. A comprehensive method of rock mass characterization for indicating natural slope instability. The Quarterly Journal of Engineering Geology29, 37–56.
    [Google Scholar]
  22. PettinelliE., BeaubienS. and TommasP.1996. GPR investigations to evaluate the geometry of rock slides and buckling in a limestone formation in northern Italy. European Journal of Environmental and Engineering Geophysics1, 271–286.
    [Google Scholar]
  23. ReynoldsJ.M.2000. An Introduction to Applied and Environmental Geophysics.John Wiley & Sons, Inc.
    [Google Scholar]
  24. RouillerJ.D., JaboyedoffM., MarroC., PhilippossianF. and MaminM.1998. Pentes instables dans le Pennique valaisan. MATTEROCK: une méthodologie d’auscultation des falaises et de détection des éboulements majeurs potentiels.Final Report PNR31, VDF, Zürich.
    [Google Scholar]
  25. SDAU
    SDAU2001. Etude des aléas majeurs d’écroulement rocheux sur les falaises calcaires du Y grenoblois. In: Rapport d’étape du syndicat mixte pour l’élaboration et le suivi du Schéma Directeur d’Aménagement et d’Urbanisme de l’agglomération Grenobloise.Internal report, Grenoble.
    [Google Scholar]
  26. StevensK.M., LohdaG.S., HollowayA.L. and SoonawalaN.M.1995. The application of ground‐penetrating radar for mapping fractures in plutonic rocks within the Whiteshell Research Area, Pinawa, Manitoba, Canada. Journal of Applied Geophysics33, 125–141.
    [Google Scholar]
  27. ZouD.H. and WuY.K.2001. Investigation of blast‐induced fracture in rock mass using reversed vertical seismic profiling. Journal of Applied Geophysics48, 153–169.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2003007
Loading
/content/journals/10.3997/1873-0604.2003007
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error