1887
Volume 7 Number 1
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

Precision farming overcomes the paradigm of uniform field treatment by site‐specific data acquisition and treatment to cope with within‐field variability. Precision farming heavily relies on spatially dense information about soil and crop status. While it is often difficult and expensive to obtain precise soil information by traditional soil sampling and laboratory analysis some geophysical methods offer means to obtain subsidiary data in an efficient way. In particular, geoelectrical soil mapping has become widely accepted in precision farming. At present it is the most successful geophysical method providing the spatial distribution of relevant agronomic information that enables us to determine management zones for precision farming.

Much work has been done to test the applicability of existing geoelectrical methods and to develop measurement systems applicable in the context of precision farming. Therefore, the aim of this paper was to introduce the basic ideas of precision farming, to discuss current precision farming applied geoelectrical methods and instruments and to give an overview about our corresponding activities during recent years. Different experiments were performed both in the laboratory and in the field to estimate first, electrical conductivity affecting factors, second, relationships between direct push and surface measurements, third, the seasonal stability of electrical conductivity patterns and fourth, the relationship between plant yield and electrical conductivity. From the results of these experiments, we concluded that soil texture is a very dominant factor in electrical conductivity mapping. Soil moisture affects both the level and the dynamic range of electrical conductivity readings.

Nevertheless, electrical conductivity measurements can be principally performed independent of season. However, electrical conductivity field mapping does not produce reliable maps of spatial particle size distribution of soils, e.g., necessary to generate input parameters for water and nutrient transport models. The missing step to achieve this aim may be to develop multi‐sensor systems that allow adjusting the electrical conductivity measurement from the influence of different soil water contents.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2008031
2008-09-01
2024-04-26
Loading full text...

Full text loading...

References

  1. AllenD.2004. A review of geophysical equipment applied to groundwater and soil investigation. PhD thesis, National Centre of Groundwater Management, University of Technology, Sydney.
    [Google Scholar]
  2. ArchieG.E.1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineering146, 54–62.
    [Google Scholar]
  3. BrenningA., KoszinskiS. and SommerM.2006. Geostatistical mapping of soil conductivity and clay content beyond field boundaries. XIth International Congress, International Association for Mathematical Geology. Université de LiègeBelgium.
    [Google Scholar]
  4. CorwinD.L. and LeschS.M.2003. Application of soil electrical conductivity to precision agriculture: Theory, principles, and guidelines. Agronomy Journal95, 455–471.
    [Google Scholar]
  5. DabasM.2002. Apport de l’ARP (résitité électrique) à la connaissance des sols agricoles (Contribution of the ARP (electrical resistance) to the survey of agricultural soils). Actes des 7èmes Journées Nationales de l’Etude des Sols, 267–268.
    [Google Scholar]
  6. DurlesserH.1999. Bestimmung der Variation bodenphysikalischer Parameter in Raum und Zeit mit elektromagnetischen Induktionsverfahren. FAM‐Bericht 35. Shaker Verlag, Aachen.
    [Google Scholar]
  7. Eijkelkamp. 2003. Operating instructions. 14.01 EC‐probe set for soil conductivity measurements. URL: http://www.eijkelkamp.com/ (cited 2008‐04‐14).
  8. GebbersR. and LückE.2005. Comparison of geoelectrical methods for soil mapping. Proceedings 5th European Conference on Precision Agriculture,473–479.
    [Google Scholar]
  9. Geocarta. 2004. URL: http://geocarta.sa.free.fr/fr/home.html (cited 2008‐04‐14).
  10. GuptaS.C. and HanksR.J.1972. Influence of water content on electrical conductivity of the soil. Soil Science Society of America Proceedings36, 855.
    [Google Scholar]
  11. HinckS., MuellerK. and EmeisN.2005. Erfassungsmöglichkeiten verschiedener Bodenparameter mit Hilfe einer Multi‐Sensortechnik. DBG Mitteilungen. Deutsche Bodenkundliche Gesellschaft107, 735–736.
    [Google Scholar]
  12. LampJ., GraeberM. and HerbstR.2005. Integrating geoelectrical sensor data for detailed surveys of soil bodies. Biannual Meeting of Commission 1.5 Pedometrics, Division 1 of the International Union of Soil Science (IUSS), pp. 34–36.
    [Google Scholar]
  13. LampJ. and OtteF.1988. Digital soil maps, a basis for computer assisted farm management. Geologisches Jahrbuch A104, 319–327.
    [Google Scholar]
  14. LundE.D., ColinD. and ChristyP.E.1978. Using electrical conductivity to provide answers for precision farming. 1st International Conference Geospatial Information in Agriculture and Forestry, Orlando, Florida.
    [Google Scholar]
  15. LückE. and RühlmannJ.2007. Geophilus electricus – ein neues ´soil mapping system´. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft110, 607–608.
    [Google Scholar]
  16. McBratneyA.B., MinasnyB. and WhelanB.M.2005. Obtaining ‘useful’ high‐resolution soil data from proximally‐sensed electrical conductivity/resistivity (PSEC/R) surveys. Proceedings of Precision Agriculture ’05, pp. 503–510.
    [Google Scholar]
  17. McNeillJ.D.1980. Electrical conductivity of soils and rocks. Technical Note TN‐5. Geonics LtdCanada.
    [Google Scholar]
  18. PetersenH., FeigeH.RabbelW. and HornR.2005. Anwendbarkeit geophysikalischer Prospektionsmethoden zur Bestimmung von Bodenverdichtungen und Substratheterogenitäten landwirtschaftlich genutzter Flächen. Journal of Plant Nutrition and Soil Science186, 68–79. doi:10.1002/jpln.200421282
    [Google Scholar]
  19. RadicT.2005. Bedienungsanleitung SIP RABBIT. RADIC‐RESEARCH. http://www.radic‐research.homgepage.t‐online.de.
  20. RadicT.2008. Instrumentelle und auswertemethodische Arbeiten zur Wechselstromgeoelektrik. PhD thesis, TU Berlin.
    [Google Scholar]
  21. RobertP.2001. Precision agriculture. a challenge for crop nutrition management. Plant and Soil247, 143–149.
    [Google Scholar]
  22. RobertP.C. and AndersonJ.L.1986. Use of computerized soil survey reports in county extension offices. Proceedings International Conference on Computers.
    [Google Scholar]
  23. RuehlmannJ.2006. The box plot experiment in Grossbeeren after six rotations: Effect of fertilization on crop yield. Archives of Agronomy and Soil Science52, 1–7.
    [Google Scholar]
  24. RuffetC., DarotM. and GuéguenY.1995. Surface conductivity in rocks: A review. Surveys in Geophysics16, 83–105.
    [Google Scholar]
  25. SchefferF. and SchachtschabelP.1989. Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, Stuttgart.
    [Google Scholar]
  26. StrongD.T., de WeverH., MerckxR. and RecousS.2004. Spatial location of carbon decomposition in the soil pore system. European Journal of Soil Science55,739–750.
    [Google Scholar]
  27. SudduthK.A., DrummondS.T. and KitchenN.R.2001. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture31, 239–264.
    [Google Scholar]
  28. SüdekumW.1999. Mobile Elektrodengruppe zur oberflächennahen geoelektrischen Kartierung. In: Angewandte Geophysik – Neue Geräte und ihre Anwendungen (ed. R.Schulz), pp. 35–62. Geologisches Jahrbuch Reihe E.
    [Google Scholar]
  29. VERIS
    VERIS2001. VERIS technologies. Salina, Kansas, USA. http://www.veristech.com (cited 2008‐06‐08).
    [Google Scholar]
  30. YooG., SpomerL.A. and WanderM.M.2006. Regulation of carbon mineralization rates by soil structure and water in an agricultural field and a prairie‐like soil. Geoderma135, 16–25.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2008031
Loading
/content/journals/10.3997/1873-0604.2008031
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error