1887
Volume 14 Number 5
  • ISSN: 1569-4445
  • E-ISSN: 1873-0604

Abstract

ABSTRACT

We present an algorithm that performs sequentially one‐dimensional inversion of subsurface magnetic permeability and electrical conductivity by using multi‐configuration electromagnetic induction sensor data. The presented method is based on the conversion of the in‐phase and out‐of‐phase data into effective magnetic permeability and electrical conductivity of the equivalent homogeneous half‐space. In the case of small‐offset systems, such as portable electromagnetic induction sensors, for which in‐phase and out‐of‐phase data are moderately coupled, the effective half‐space magnetic permeability and electrical conductivity can be inverted sequentially within an iterative scheme. We test and evaluate the proposed inversion strategy using synthetic and field examples. First, we apply it to synthetic data for some highly magnetic environments. Then, the method is tested on real field data acquired in a basaltic environment to image a formation of archaeological interest. These examples demonstrate that a joint interpretation of in‐phase and out‐of‐phase data leads to a better characterisation of the subsurface in magnetic environments such as volcanic areas.

Loading

Article metrics loading...

/content/journals/10.3997/1873-0604.2016029
2016-07-01
2020-04-01
Loading full text...

Full text loading...

References

  1. AsterR., BorchersB. and ThurberC.Parameter Estimation and Inverse Problems.Elsevier Academic Press.
    [Google Scholar]
  2. BeamishD.2011. Low induction number, ground conductivity meters: a correction procedure. Journal of Applied Geophysics75, 244–253.
    [Google Scholar]
  3. BeardL. and NyquistJ.1998. Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability. Geophysics63, 1556–1564.
    [Google Scholar]
  4. BenechC., DabasM., SimonF.‐X., TabbaghA. and ThiessonJ.2016. Interpretation of shallow electromagnetic instruments resistivity and magnetic susceptibility measurements using rapid 1D/3D inversion. Geophysics81, E103–E112.
    [Google Scholar]
  5. BonigerU. and TronickeJ.2010. On the potential of kinematic GPR surveying using a self‐tracking total station: evaluating system crosstalk and latency. IEEE Transactions on Geoscience and Remote Sensing48, 3792–3798.
    [Google Scholar]
  6. ConstableS., ParkerR. and ConstableC.1987. Occam’s inversion: a practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics52, 289–300.
    [Google Scholar]
  7. DaviesG., HuangJ., SantosF.M. and TriantafilisJ.2015. Modeling coastal salinity in quasi 2D and 3D using a DUALEM‐421 and inversion software. Groundwater53, 424–431.
    [Google Scholar]
  8. DelefortrieS., De SmedtP., SaeyT., Van de VijverE. and Van MeirvenneM.2014. An efficient calibration procedure for correction of drift in EMI survey data. Journal of Applied Geophysics110, 115–125.
    [Google Scholar]
  9. FarquharsonC., OldenburgD. and RouthP.2003. Simultaneous 1D inversion of loop‐loop electromagnetic data for magnetic susceptibility and electrical conductivity. Geophysics68, 1857–1869.
    [Google Scholar]
  10. FrischknechtF., LabsonV., SpiesB. and AndersonW.1991. Profiling methods using small sources. In: Electromagnetic Methods in Applied Geophysics, Vol. 2 (ed. M.N.Nabighian ).
    [Google Scholar]
  11. GrellierS., FlorschN., CamerlynckC., JaneauJ., PodwojewskiP. and LorentzS.2013. The use of Slingram EM38 data for topsoil and subsoil geoelectrical characterization with a Bayesian inversion. Geoderma200–201, 140–155.
    [Google Scholar]
  12. GuillemoteauJ., SailhacP. and BehaegelM.2011. Regularisation strategy for the layered inversion of Airborne TEM data: application on data aquired over the basin of Franceville (Gabon). Geophysical Prospecting59, 1132–1143.
    [Google Scholar]
  13. GuillemoteauJ., SailhacP. and BehaegelM.2012. Fast approximate 2D inversion of airborne TEM data: Born approximation and empirical approach. Geophysics77, WB89–WB97.
    [Google Scholar]
  14. GuillemoteauJ., SailhacP. and BehaegelM.2015a. Modelling an arbitrarily oriented magnetic dipole over an homogenous half‐space for a rapid topographic correction of airborne EM data. Exploration Geophysics46, 85–96.
    [Google Scholar]
  15. GuillemoteauJ., SailhacP., BoulangerC. and TrulesJ.2015b. Inversion of ground constant offset loop‐loop electromagnetic data for a large range of induction numbers. Geophysics80, E11–E21.
    [Google Scholar]
  16. GuillemoteauJ. and TronickeJ.2015. Non‐standard ground conductivity meter configurations: evaluating sensitivities and applicability. Journal of Applied Geophysics118, 15–23.
    [Google Scholar]
  17. HuangH. and FraserD.2003. Inversion of helicopter electromagnetic data to a magnetic conductive layered earth. Geophysics68, 1211–1223.
    [Google Scholar]
  18. JohansenH.1977. A man/computer interpretation system for resistivity soundings over a horizontally stratified earth. Geophysical Prospecting44, 131–152
    [Google Scholar]
  19. KangS., SeolS., ChungY. and KwonH.2013. Pitfalls of 1D inversion of small‐loop electromagnetic data for detecting man‐made object. Journal of Applied Geophysics90, 96–109.
    [Google Scholar]
  20. LavoueF., van der KrukJ., RingsJ., AndréF., MoghadasD., HuismanJ. et al. 2010. Electromagnetic induction calibration using apparent conductivity modelling based on electrical resistivity tomography. Near Surface Geophysics8, 553–561.
    [Google Scholar]
  21. MayoralA. and DupreuxB.2016. Le lac du Puy de Corent (Veyre‐Monton, 63) Sondages Géoarchéologiques 2015: Rapport de Prospection Thématique.
    [Google Scholar]
  22. McNeillJ.1980. Electromagnetic Terrain Conductivity Measurements at Low Induction Numbers, Technical Note TN‐6.Geonics Ltd.
    [Google Scholar]
  23. PalackyG.1988. Resistivity characteristics of geologic targets. In: Electromagnetic Methods in Applied Geophysics, Vol. 1 (ed. M.N.Nabighian ).
    [Google Scholar]
  24. Pérez‐FloresM., Antonio‐CarpioR., Gómez‐TrevinoE., FergusonI. and S.Méndez‐Delgado2012. Imaging of 3D electromagnetic data at low‐induction numbers. Geophysics77, WB47–WB57.
    [Google Scholar]
  25. Perez‐FloresM., Méndez‐DelgadoS. and Gómez‐TrevinoE.2001. Imaging low‐frequency and dc electromagnetic fields using a simple linear approximation. Geophysics66, 1067–1081.
    [Google Scholar]
  26. SaeyT., De SmedtP., Monirul IslamM., MeerschmanE., Van de VijverE. and LehouckA.2012. Depth slicing of multi‐receiver EMI measurements to enhance the delineation of contrasting subsoil features. Geoderma189, 514–521.
    [Google Scholar]
  27. SasakiY., KimJ. and ChoS.2010. Mulitdimensional inversion of loop‐loop frequency‐domain EM data for resistivity and magnetic susceptibility. Geophysics75, 213–223.
    [Google Scholar]
  28. ScollarI., TabbaghA., HesseA. and HerzogI.1990. Archaeological Prospecting and Remote Sensing.
    [Google Scholar]
  29. SiemonB.2012. Accurate 1D forward and inverse modeling of high frequency helicopter‐borne electromagnetic data. Geophysics77, WB71–WB87.
    [Google Scholar]
  30. SimonF.X., SarrisA., ThiessonJ. and TabbaghA.2015. Mapping of quadrature magnetic susceptibility/magnetic viscosity of soils by using multi‐frequency EMI. Journal of Applied Geophysics120, 36–47.
    [Google Scholar]
  31. TabbaghA.1982. L’interprétation des données en prospection electroma‐gnétique avec les appareils SH3 et EM15. Revue d’Archéométrie (in French) 6, 1–11.
    [Google Scholar]
  32. TarantolaA.2005. Inverse Problem Theory. Society for Industrial and Applied Mathematics. Philadelphia, USA.
    [Google Scholar]
  33. ThiessonJ., KessouriP., SchamperC. and A.Tabbagh2014. Calibration of frequency‐domain electromagnetic devices used in near‐surface surveying. Near Surface Geophysics12, 481–491.
    [Google Scholar]
  34. TiteM.S. and MullinsC.1970. Electromagnetic prospecting on archaeological sites using a soil conductivity meter. Archaeometry12, 97–104.
    [Google Scholar]
  35. von HebelC., RudolphS., MesterA., HuismanJ., KumbharP., VereeckenH. and van der KrukJ.2014. Three‐dimensional imaging of subsurface structural patterns using quantitative large‐scale multi‐configuration electromagnetic induction data. Water Resources Research50, 2732–2748.
    [Google Scholar]
  36. WaitJ.1982. Geo‐electromagnetism.Academic Press Inc.
    [Google Scholar]
  37. YiM. and SasakiY.2015. 2‐D and 3‐D joint inversion of loop‐loop electromagnetic and electrical data for resistivity and magnetic susceptibility. Geophysical Journal International203, 1085–1095.
    [Google Scholar]
  38. YinC. and HodgesG.2007. Simulated annealing for airborne EM inversion l. Geophysics72, F189–F195.
    [Google Scholar]
  39. ZhangZ., RouthP., OldenburgD., AlumbaughD. and NewmanG.2000. Reconstruction of 1‐D conductivity from dual‐loop EM data. Geophysics65, 492–501.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.3997/1873-0604.2016029
Loading
/content/journals/10.3997/1873-0604.2016029
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error