1887
Volume 22, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

An unconformity has been observed along the Black Sea shelf on seismic reflection profiles and wells which is broadly similar to the one associated with that formed during the Messinian salinity crisis (MSC) in the Mediterranean. Therefore, this intra- (or Middle) Pontian unconformity has been traditionally interpreted as the manifestation of the MSC in the Black Sea Basin. However, the magnitude of the sea-level fall associated with this erosive surface does not appear to be nearly as significant as was assumed previously. Also, the inferred MSC surface itself cannot be easily followed into the palaeo-deep-water basin as a regional unconformity in the same manner as in the Mediterranean. Moreover, around the Black Sea, there is no evidence of major river incisions during the MSC, unlike the well-documented cases in the Mediterranean region. If the MSC evaporites in the Mediterranean indeed deposited in a subaerial setting at the basin floor, the lack of a major drawdown in the Black Sea explains why there are no Messinian evaporites in the Black Sea. Owing to the approximately 500 m MSC sea-level drop the Black Sea basin system, this basin did not even get close to the conditions required for the formation of evaporites in the basin centre. As the magnitude of the sea-level drop and the overall impact of the MSC in the Black Sea is interpreted to be less significant than in the Mediterranean, the risk of breaching pre-existing hydrocarbon traps during the MSC is less than has been suggested before.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-003
2016-09-16
2020-04-09
Loading full text...

Full text loading...

References

  1. Afanasenkov, A.P., Nikishin, A.M. & Obukhov, A.N.
    2007. Geology of the Eastern Black Sea. Scientific World, Moscow.
    [Google Scholar]
  2. Alekseev, A.S., Sorokin, V.M., Sokolov, V.N. & Kuprin, P.N.
    2012. A Calciosolenia brasiliensis (Coccolithophorida) find in Neogene sediments of a deep Black Sea basin and its connection with the Mediterranean. Doklady Earth Sciences, 446, 1148–1150.
    [Google Scholar]
  3. Arkhangel'skii, A.D., Blokhin, A.A. & Menner, V.V.
    1930. Geological study in central and western parts of the Kerch Peninsula: a concise outline of the geological setting and oil fields of the Kerch Peninsula. Transactions of the Geological and Prospecting Service of U.S.S.R. In Russian with English summary, 13, 52–80.
    [Google Scholar]
  4. Bache, F., Popescu, S.-M. et al.
    2012. A two-step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Research, 24, 125–153, http://doi.org/10.1111/j.1365-2117.2011.00521.x
    [Google Scholar]
  5. Bache, F., Gargani, J. et al.
    2015. Messinian evaporite deposition during sea level rise in the Gulf of Lions (Western Mediterranean). Marine and Petroleum Geology, 66, 262–277.
    [Google Scholar]
  6. Banks, C.J., RobinsonA.G. & Williams, M.P.
    1997. Structure and regional tectonics of the Achara–Trialet fold belt and the adjacent Rioni and Kartli foreland basins, Republic of Georgia. In: Robinson, A.G. (ed.) Regional and Petroleum Geology of the Black Sea and Surrounding Region. American Association of Petroleum Geologists, Memoirs, 68, 331–346.
    [Google Scholar]
  7. Barber, P.M.
    1981. Messinian subaerial erosion of the Proto-Nile delta. Marine Geology, 44, 253–272.
    [Google Scholar]
  8. Barr, F.T. & Walker, B.R.
    1973. Late Tertiary channel system in northern Libya and its implications on Mediterranean sea-level changes. In: Rayan, W.B., Hsü, K.J. et al. (eds) Initial Reports of the Deep Sea Drilling Project, Volume 13. United States Government Printing Office, Washington, DC, 1244–1251.
    [Google Scholar]
  9. Bartol, J. & Govers, R.
    2009. Flexure due to the Messinian–Pontian sea level drop in the Black Sea. Geochemistry, Geophysics, Geosystems, 10, Q10013, http://doi.org/10.1029/2009GC002672
    [Google Scholar]
  10. Bartol, J., Matenco, L., Garcia-Castellanos, D. & Leever, K.
    2012. Modelling depositional shifts between sedimentary basins: Sediment pathways in Paratethys basins during the Messinian Salinity Crisis. Tectonophysics, 536, 110–121, http://doi.org/10.1016/j.tecto.2012.03.007
    [Google Scholar]
  11. Bati, Z. & Sancay, R.H.
    2013. Palynostratigraphic framework of Neogene deposits in offshore Black Sea, Turkey. Abstract presented at the AAPG Europe Regional Conference, 12–19 October 2013, Tbilisi, Georgia.
    [Google Scholar]
  12. Bega, Z. & Ionescu, G.
    2009. Neogene structural styles of the NW Black Sea region, offshore Romania. The Leading Edge, 28, 1082–1089, http://doi.org/10.1190/1.3236378
    [Google Scholar]
  13. Bertoni, C. & Cartwright, J.
    2015. Messinian evaporites and fluid flow. Marine and Petroleum Geology, 66, 165–176.
    [Google Scholar]
  14. Bowman, S.A.
    2012. A comprehensive review of the MSC facies and their origins in the offshore Sirt Basin, Libya. Petroleum Geoscience, 18, 457–469, http://doi.org/10.1144/petgeo2011-070
    [Google Scholar]
  15. Christeleit, E.C., Brandon, M.T. & Zhuang, G.
    2015. Evidence for deep-water deposition of abyssal Mediterranean evaporites during the Messinian salinity crisis. Earth and Planetary Science Letters, 427, 226–235.
    [Google Scholar]
  16. Chumakov, I.S.
    1973. Pliocene and Pleistocene deposits of the Nile valley in Nubia and upper Egypt. In: Rayan, W.B., Hsü, K.J. et al. (eds) Initial Reports of the Deep Sea Drilling Project, Volume 13. United States Government Printing Office, Washington, DC, 1242–1243.
    [Google Scholar]
  17. Clauzon, G.
    1973. The eustatic hypothesis and the pre-Pliocene cutting of the Rhône valley. In: Rayan, W.B., Hsü, K.J. et al. (eds) Initial Reports of the Deep Sea Drilling Project, Volume 13. United States Government Printing Office, Washington, DC, 1251–1256.
    [Google Scholar]
  18. 1982. The Messinian Rhône Canyon as a definite proof of the desiccated deep-basin model. Bulletin de la Société Géologique de France, 24, 597–610.
    [Google Scholar]
  19. Clauzon, G., Suc, J.P., Popescu, S.M., Marunteanu, M., Rubino, J.L., Marinescu, F. & Melinte, M.C.
    2005. Influence of Mediterranean sea-level changes on the Dacic Basin (Eastern Paratethys) during the late Neogene: the Mediterranean Lago Mare facies deciphered. Basin Research, 17, 437–462.
    [Google Scholar]
  20. Csató, I., Tóth, S., Cătuneanu, O. & Granjeon, D.
    2015. A sequence stratigraphic model for the Upper Miocene–Pliocene fill of the Pannonian Basin, eastern Hungary. Marine and Petroleum Geology, 66, 117–134.
    [Google Scholar]
  21. de la Vara, A., van Baak, C.G., Marzocchi, A., Grothe, A. & Meijer, P.T.
    2016. Quantitative analysis of Paratethys sea level change during the Messinian Salinity Crisis. Marine Geology, 379, 39–51.
    [Google Scholar]
  22. Dimitrov, H. & Georgiev, G.
    2011. Correlation between main seismic sequence boundaries in Kamchia basin (offshore Bulgaria) and Western Black Sea basin. Extended abstract presented at the73rd EAGE Conference & Exhibition, 23–26 May 2011Vienna, Austria.
    [Google Scholar]
  23. Dinu, C., Wong, H.K. & Ţambrea, D.
    2002. Stratigraphic and tectonic syntheses of the Romanian Black Sea shelf and correlation with major land structures. In: Dinu, C. & Mocanu, V. (eds) Geology and Tectonics of the Romanian Black Sea Shelf and its Hydrocarbon Potential. Bucharest Geoscience Forum Special Volume, 2, 101–117.
    [Google Scholar]
  24. Dinu, C., Wong, H.K., Ţambrea, D. & Matenco, L.
    2005. Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics, 410, 417–435, http://doi.org/10.1016/j.tecto.2005.04.012
    [Google Scholar]
  25. Dondurur, D., Küçük, H.M. & Çifçi, G.
    2013. Quaternary mass wasting on the western Black Sea margin, offshore of Amasra. Global and Planetary Change, 103, 248–260, http://doi.org/10.1016/j.gloplacha.2012.05.009
    [Google Scholar]
  26. Finetti, I., Bricchi, G., Del Ben, A., Pipan, M. & Xuan, Z.
    1988. Geophysical study of the Black Sea. Bollettino di Geofisika Teorica ed Applicata, 30, 197–324.
    [Google Scholar]
  27. Flood, R.D., Manley, P.L., Kowsmann, R.O., Appi, C.J. & Pirmez, C.
    , 1991. Seismic facies and late Quaternary growth of Amazon submarine fan. In: Weimer, P. & Link, M.H. (eds) Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. Springer, New York, 415–433.
    [Google Scholar]
  28. Georgiev, G.
    2012. Geology and hydrocarbon systems in the Western Black Sea. Turkish Journal of Earth Sciences, 21, 723–754.
    [Google Scholar]
  29. Gillet, H., Lericolais, G. & Réhault, J.-P.
    2007. Messinian event in the Black Sea: Evidence of a Messinian erosional surface. Marine Geology, 244, 142–165, http://doi.org/10.1016/j.margeo.2007.06.004
    [Google Scholar]
  30. Graham, R., Kaymakci, N. & Horn, B.W.
    2013. The Black Sea: something different?GEO ExPro, 10, 57–62.
    [Google Scholar]
  31. Grothe, A., Sangiorgi, F., Mulders, Y.R., Vasiliev, I., Reichart, G.-J., Brinkhuis, H. & Krijgsman, W.
    2014. Black Sea desiccation during the Messinian Salinity Crisis: Fact or fiction?Geology, 42, 563–566, http://doi.org/10.1130/G35503.1
    [Google Scholar]
  32. Haq, B.U., Hardenbol, J. & Vail, P.R.
    1987. Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167, http://doi.org/10.1126/science.235.4793.1156
    [Google Scholar]
  33. Hardie, L.A. & Lowenstein, T.K.
    2004. Did the Mediterranean Sea dry out during the Miocene? A reassessment of the evaporite evidence from DSDP Legs 13 and 42A cores. Journal of Sedimentary Research, 74, 453–461.
    [Google Scholar]
  34. Harris, P.T., Macmillan-Lawler, M., Rupp, J. & Baker, E.K.
    2014. Geomorphology of the oceans. Marine Geology, 352, 4–24.
    [Google Scholar]
  35. Hryniv, S.P., Dolishniy, B.V., Khmelevska, O.V., Poberezhskyy, A.V. & Vovnyuk, S.V.
    2007. Evaporites of Ukraine: a review. In: Schreiber, B.C., Lugli, S. & Bąbel, M. (eds) Evaporites Through Space and Time. Geological Society, London, Special Publications, 285, 309–334, http://doi.org/10.1144/SP285.18
    [Google Scholar]
  36. Hsü, K.J. & Giovanoli, F.
    1979. Messinian event in the Black Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 29, 75–93, http://doi.org/10.1016/0031-0182(79)90075-0
    [Google Scholar]
  37. Hsü, K.J., Ryan, W.B.F. & Cita, M.B.
    1973. Late Miocene desiccation of the Mediterranean. Nature, 242, 240–244, http://doi.org/10.1038/242240a0
    [Google Scholar]
  38. Jobe, Z.R., Lowe, D.R. & Uchytil, S.J.
    2011. Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea. Marine and Petroleum Geology, 28, 843 – 8860.
    [Google Scholar]
  39. Khriachtchevskaia, O., Stovba, S. & Stephenson, R.
    2010. Cretaceous–Neogene tectonic evolution of the northern margin of the Black Sea from seismic reflection data and tectonic subsidence analysis. In: Sosson, M., Kaymakci, N., Stephenson, R.A., Bergerat, F. & Starostenko, V. (eds) Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society, London, Special Publications, 340, 137–157, http://doi.org/10.1144/SP340.8
    [Google Scholar]
  40. Kojumdgieva, E.
    1979. Critical notes on the stratigraphy of Black Sea boreholes (Deep Sea Drilling Project, Leg 42B). Geologica Balcanica, 9, 107–110.
    [Google Scholar]
  41. 1983. Palaeogeographic environment during the desiccation of the Black Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 43, 195–204, http://doi.org/10.1016/00310182(83)90011-1
    [Google Scholar]
  42. Konerding, C., Dinu, C. & Wong, H.K.
    2010. Seismic sequence stratigraphy, structure and subsidence history of the Romanian Black Sea shelf. In: Sosson, M., Kaymakci, N., Stephenson, R.A., Bergerat, F. & Starostenko, V. (eds) Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society, London, Special Publications, 340, 159–180, http://doi.org/10.1144/SP340.9
    [Google Scholar]
  43. Korucu, Ö., Sipahioğlu, N.Ö., Aktepe, S. & Bengü, E.
    2013. Correlation and determination of Neogene sequences employing recent ultra-deep wells in Western-Central part of Turkish Black Sea. Abstract presented at the AAPG Europe Regional Conference, 12–19 October 2013, Tbilisi, Georgia.
    [Google Scholar]
  44. Krezsek, C., Schleder, Z., Bega, Z., Ionescu, G. & Tari, G.
    2016. The Messinian sea-level fall in the western Black Sea: small or large? Insights from offshore Romania. Petroleum Geoscience, first published online June 28, 2016, http://doi.org/10.1144/petgeo2015-093
    [Google Scholar]
  45. Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V.
    2010. Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth and Planetary Science Letters, 290, 183–191, http://doi.org/10.1016/j.epsl.2009.12.020
    [Google Scholar]
  46. Letouzey, J., Gonnard, R., Montadert, L., Kristchev, K. & Dorkel, A.
    1978. Black Sea: geological setting and recent deposit distribution from seismic reflection data. In: Ross, D.A., Neprochnov, Y.P. et al. (eds) Initial Reports of the Deep Sea Drilling Project, Volume 42. United States Government Printing Office, Washington, DC, 1077–1084.
    [Google Scholar]
  47. Lofi, J., Déverchère, J., Gaullier, V., Gillet, H., Gorini, C., Guennoc, P. & Thinon, I.
    2011. Seismic atlas of the Messinian Salinity Crisis markers in the Mediterranean and Black Seas. Mémoire de la Société Géologique, 179, 1–72.
    [Google Scholar]
  48. Matenco, L., Munteanu, I. et al.
    2016. The interplay between tectonics, sediment dynamics and gateways evolution in the Danube system from the Pannonian Basin to the western Black Sea. Science of the Total Environment, 543, 807–827.
    [Google Scholar]
  49. Matoshko, A.V., Gozhik, P.F. & Danukalova, G.
    2004. Key Late Cenozoic fluvial archives of eastern Europe: the Dniester, Dnieper, Don and Volga. Proceedings of the Geologists’ Association, 115, 141–173.
    [Google Scholar]
  50. Matoshko, A., Gozhik, P. & Semenenko, V.
    2009. Late Cenozoic fluvial development within the Sea of Azov and Black Sea coastal plains. Global and Planetary Change, 68, 270–287.
    [Google Scholar]
  51. Meijer, P.T.
    2006. A box model of the blocked-outflow scenario for the Messinian Salinity Crisis. Earth and Planetary Science Letters, 248, 486–494.
    [Google Scholar]
  52. Menlikli, C., Demirer, A., Sipahioğlu, Ö., Körpe & L. & Aydemir, V.
    2009. Exploration plays in the Turkish Black Sea. The Leading Edge, 28, 1066–1075, http://doi.org/10.1190/1.3236376
    [Google Scholar]
  53. Munteanu, I., Matenco, L., Dinu, C. & Cloetingh, S.
    2012. Effects of large sea-level variations in connected basins: The Dacian–Black Sea system of the Eastern Paratethys. Basin Research, 24, 583–597, http://doi.org/10.1111/j.1365-2117.2012.00541.x
    [Google Scholar]
  54. Nicolai, C.
    2008. Tracing the As Sahabi Channel System in the Ajdabiya Trough, Central Sirt Basin, Libya. Garyounis Scientific Bulletin, Special Issue, 5, 85–94.
    [Google Scholar]
  55. Nikishin, A.M., Okay, A.I., Tüysüz, O., Demirer, A., Amelin, N. & Petrov, E.
    2015a. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Marine and Petroleum Geology, 59, 638–655.
    [Google Scholar]
  56. Nikishin, A.M., Okay, A., Tüysüz, O., Demirer, A., Wannier, M., Amelin, N. & Petrov, E.
    2015b. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Marine and Petroleum Geology, 59, 656–670.
    [Google Scholar]
  57. Oteleanu, A., Olaru, R., Rainer, T. & Tari, G.
    , 2014. basin modelling of a regional transect in the western Black Sea. Extended abstract presented at the 76th EAGE Conference and Exhibition, 16–19 June 2014, Amsterdam, The Netherlands.
    [Google Scholar]
  58. Popescu, S.-M.
    2006. Late Miocene and early Pliocene environments in the southwestern Black Sea region from high-resolution palynology of DSDP Site 380A (Leg 42B). Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 64–77, http://doi.org/10.1016/j.palaeo.2006.03.018
    [Google Scholar]
  59. Popescu, S.-M., Biltekin, D. et al.
    2010. Pliocene and Lower Pleistocene vegetation and climate changes at the European scale: Long pollen records and climatostratigraphy. Quaternary International, 219, 152–167, http://doi.org/10.1016/j.quaint.2010.03.013
    [Google Scholar]
  60. Popescu, S.M., Melinte-Dobrinescu, M.C. & Suc, J.P.
    2016. Objective utilization of data from DSDP Site 380 (Black Sea) – Comment on the paper by van Baak et al . Terra Nova, 28, 228–229.
    [Google Scholar]
  61. Popov, S.V., Shcherba, I.G., Ilyina, L.B., Nevesskaya, L.A., Paramonova, N.P., Khondkarian, S.O. & Magyar, I.
    2006. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 91–106, http://doi.org/10.1016/j.palaeo.2006.03.020
    [Google Scholar]
  62. Popov, S.V., Antipov, M.P., Zastrozhnov, A.S., Kurina, E.E. & Pinchuk, T.N.
    2010. Sea-level fluctuations on the north shelf of the Eastern Paratethys in the Oligocene–Neogene. Stratigraphy and Geological Correlation, 18, 200–224.
    [Google Scholar]
  63. Radionova, E. & Golovina, L.
    2011. Upper Maeotian–Lower Pontian ‘Transitional Strata’ in the Taman Peninsula: stratigraphic position and paleogeographic interpretation. Geologica Carpathica, 62, 77–90.
    [Google Scholar]
  64. Ross, D.A., Yuri, P.P. et al.
    1978. In: Ross, D.A., Neprochnov, Y.P. et al. (eds) Initial Reports of the Deep Sea Drilling Project, Volume 42, Site 380, 119–291. United States Government Printing Office, Washington, DC.
    [Google Scholar]
  65. Rostovtseva, Y.V. & Rybkina, A.I.
    2014. Cyclostratigraphy of Pontian deposits of the Eastern Paratethys (Zheleznyi Rog section, Taman Region). Moscow University Geology Bulletin, 69, 236–241.
    [Google Scholar]
  66. Roveri, M., Manzi, V., Bergamasco, A., Falcieri, F.M., Gennari, R., Lugli, S. & Schreiber, B.C.
    2014. Dense shelf water cascading and Messinian canyons: a new scenario for the Mediterranean salinity crisis. American Journal of Science, 314, 751–784.
    [Google Scholar]
  67. Roveri, M., Gennari, R. et al.
    2016. The Messinian salinity crisis: open problems and possible implications for Mediterranean petroleum systems. Petroleum Geoscience, first published online June 28, 2016, http://doi.org/10.1144/petgeo2015-089
    [Google Scholar]
  68. Ryan, W.B.
    1978. Messinian badlands on the southeastern margin of the Mediterranean Sea. Marine Geology, 27, 349–363.
    [Google Scholar]
  69. Ryan, W.B. & Cita, M.B.
    1978. The nature and distribution of Messinian erosional surfaces – Indicators of a several-kilometer-deep Mediterranean in the Miocene. Marine Geology, 27, 193–230.
    [Google Scholar]
  70. Ryan, W.B., Pitman, W.C. et al.
    1997. An abrupt drowning of the Black Sea shelf. Marine Geology, 138, 119–126.
    [Google Scholar]
  71. Sacleux, M., Nikishin, A., Munch, H., Floodpage, J. & Cornu, T.
    2013. Impact of the Messinian Crisis on petroleum systems. In: Tari, G. (ed.) American Association of Petroleum Geologists European Regional Conference & Exhibition, Barcelona, Abstract Book. American Association of Petroleum Geologists, Tulsa, OK, 81.
    [Google Scholar]
  72. Schleder, Z., Krezsek, C., Lapadat, A., Bega, Z., Ionescu, G. & Tari, G.
    2016. Structural style in a Messinian (intra-Pontian) gravity-driven deformation system, western Black Sea, offshore Romania. Petroleum Geoscience, http://doi.org/10.1144/petgeo2015-094
    [Google Scholar]
  73. Schrader, H.-J.
    1978. Quaternary through Neogene history of the Black Sea, deduced from the paleoecology of diatoms, silicoflagellates, ebridians, and chrysomonads. In: Ross, D.A. & Neprochnov, Y.P. et al. (eds) Initial Reports of the Deep Sea Drilling Project, Volume 42. United States Government Printing Office, Washington, DC, 789–902.
    [Google Scholar]
  74. Sipahioğlu, N.Ö. & Çiftçi, S.Y.
    2010. Seismic stratigraphic analysis of Late Oligocene–Recent deltaic–turbiditic systems, Kırklareli and Bogazici 3D seismic survey areas, Western Black Sea. Paper presented at the AAPG European Region Annual Conference on Exploration in the Black Sea and Caspian Regions, 17–19 October 2010, Kiev, Ukraine.
    [Google Scholar]
  75. Sipahioğlu, N.O., Karahanoglu, N. & Altiner, D.
    2013a. Analysis of Plio-Quaternary deep marine systems and their evolution in a compressional tectonic regime, Eastern Black Sea Basin. Marine and Petroleum Geology, 43, 187–207.
    [Google Scholar]
  76. Sipahioğlu, Ö., Korucu, Ö., Aktepe, S. &Bengü, E.
    2013b. Westerly-sourced Late Oligocene–Middle Miocene axial sediment dispersal system in Turkish Western Black Sea: myth or reality?Paper presented at the 19th International Petroleum and Natural Gas Congress and Exhibition of Turkey, 15–17 May 2013, Ankara, Turkey.
    [Google Scholar]
  77. Stoffers, P. & Müller, G.
    1979. Carbonate rocks in the Black Sea basin: Indicators for shallow water and subaerial exposure during Miocene–Pliocene time. Sedimentary Geology, 23, 137–147, http://doi.org/10.1016/0037-0738(79)90011-3
    [Google Scholar]
  78. Suc, J.P., Do Couto, D. et al.
    2011. The Messinian salinity crisis in the Dacic Basin (SW Romania) and early Zanclean Mediterranean–Eastern Paratethys high sea-level connection. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 256–272.
    [Google Scholar]
  79. Suc, J.-P., Gillet, H. et al.
    2015a. The region of the Strandja Sill (North Turkey) and the Messinian events. Marine and Petroleum Geology, 66, 149–164.
    [Google Scholar]
  80. Suc, J.-P., Popescu, S.-M. et al.
    2015b. Marine gateway v. fluvial stream within the Balkans from 6 to 5 Ma. Marine and Petroleum Geology, 66, 231–245.
    [Google Scholar]
  81. Tari, G., Dicea, O., Faulkerson, J., Georgiev, G., Popov, S., Stefanescu, M. & Weir, G.
    1997. Cimmerian and Alpine stratigraphy and structural evolution of the Moesian Platform (Romania/Bulgaria). In: Robinson, A.G. (ed.) Regional and Petroleum Geology of the Black Sea and Surrounding Regions. American Association of Petroleum Geologists, Memoirs, 68, 63–90.
    [Google Scholar]
  82. Tari, G., Davies, J., Novotny, B., Dellmour, R., Larratt, E. & Kozhuharov, E.
    2009. Play types and hydrocarbon potential of the deepwater Black Sea, NE Bulgaria. The Leading Edge, 28, 1076–1081, http://doi.org/10.1190/1.3236377
    [Google Scholar]
  83. Tari, G., Kosi, W., Fallah, M., Siedl, W., Bega, Z., Krezsek, Cs. & Kozhuharov, E.
    2013. The End Eocene drawdown in the Black Sea: the deepwater record of the birth of the Paratethys. In: Sachsenhofer, R. & Tari, G. (eds) American Association of Petroleum Geologists European Regional Conference & Exhibition, Tbilisi, Abstract Book. American Association of Petroleum Geologists, Tulsa, OK, 27.
    [Google Scholar]
  84. Tari, G., Fallah, M., Kosi, W., Floodpage, J., Baur, J., Bati, Z. & Sipahioğlu, N.Ö.
    2015. Is the impact of the Messinian Salinity Crisis in the Black Sea comparable to that of the Mediterranean?Marine and Petroleum Geology, 66, 135–148.
    [Google Scholar]
  85. Tugolesov, D.A., Gorshkov, A.S., Meisner, L.B., Solov'ev, V.V. & Khakhalev, E.M.
    1985. Tectonics of Mesozoic–Cenozoic deposits of the Black Sea Basin. Nedra, Moscow (in Russian).
    [Google Scholar]
  86. Urgeles, R., Camerlenghi, A., Garcia-Castellanos, D., De Mol, B., Garcés, M., Vergés, J. & Hardman, M.
    2011. New constraints on the Messinian sea-level drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Research, 23, 123–145, http://doi.org/10.1111/j.1365-2117.2010.00477.x
    [Google Scholar]
  87. van Baak, C.G.C., Radionova, E.P., Golovina, L.A., Raffi, I., Kuiper, K.F., Vasiliev, I. & Krijgsman, W.
    2015. Messinian events in the Black Sea. Terra Nova, 27, 433–441.
    [Google Scholar]
  88. van Baak, C.G., Vasiliev, I., Palcu, D.V., Dekkers, M.J. & Krijgsman, W.
    2016. A greigite-based magnetostratigraphic time frame for the Late Miocene to Recent DSDP Leg 42B cores from the Black Sea. Frontiers in Earth Science, 4, 60.
    [Google Scholar]
  89. Vasiliev, I., Iosifidi, A.G., Khramov, A.N., Krijgsman, W., Kuiper, K.F., Langereis, C.G. & Yudin, S.V.
    2011. Magnetostratigraphy and radio-isotope dating of Upper Miocene–Lower Pliocene sedimentary successions of the Black Sea Basin (Taman Peninsula, Russia). Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 163–175, http://doi.org/10.1016/j.palaeo.2011.06.022
    [Google Scholar]
  90. Vasiliev, I., Reichart, G.-J. & Krijgsman, W.
    2013. Impact of the Messinian Salinity Crisis on Black Sea hydrology – Insights from hydrogen isotopes analysis on biomarkers. Earth and Planetary Science Letters, 362, 272–282, http://doi.org/10.1016/j.epsl.2012.11.038
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-003
Loading
/content/journals/10.1144/petgeo2016-003
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error