1887
Volume 22, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

The triggers and drivers for salt-related deformation on continental margins are intensely debated, reflecting uncertainties regarding the diagnostic value of certain structural styles, in addition to the fundamental mechanics associated with the two principal mechanisms (gliding and spreading). Determining the triggers and drivers for salt-related deformation is important because they provide insights into continent-scale geodynamic processes, the regional kinematics of gravity-driven deformation, and sediment dispersal and hydrocarbon prospectivity. The processes associated with and the timing of deformation of Messinian salt in the offshore Eastern Mediterranean are uncertain, and thus so is our understanding of the geodynamic evolution of this tectonically complex region. We here use an extensive 2D and 3D seismic reflection dataset to test models for the salt-tectonic development of Messinian salt. We contend that gliding and spreading were not mutually exclusive, but were likely to have overlapped in time and space, being associated with local and far-field tectonics (gliding), as well as differential overburden loading (spreading). We also argue that intrasalt strain and seismic-stratigraphic patterns can be explained by a model invoking a single, post-Messinian period of salt-related deformation, rather than a more complex model involving two separate deformation events that occurred during and after salt deposition.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-034
2016-09-16
2020-02-26
Loading full text...

Full text loading...

References

  1. Aal, A.A., El Barkooky, A., Gerrits, M., Meyer, H., Schwander, M. & Zaki, H.
    2000. Tectonic evolution of the Eastern Mediterranean Basin and its significance for hydrocarbon prospectivity in the ultradeepwater of the Nile Delta. The Leading Edge, 19, 1086–1102.
    [Google Scholar]
  2. Albertz, M. & Ings, S.J.
    2012. Some consequences of mechanical stratification in basin-scale numerical models of passive-margin salt tectonics. In: Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T. & Hodgkinson, R. (eds) Salt Tectonics, Sediments and Prospectivity. Geological Society, London, Special Publications, 363, 303–330, http://doi.org/10.1144/SP363.14
    [Google Scholar]
  3. Allen, H.
    2014. Stratigraphic and structural evolution of the Messinian Evaporite Complex in the Eastern Mediterranean. PhD Thesis, Imperial College London.
    [Google Scholar]
  4. Ben-Avraham, Z.
    1978. The structure and tectonic setting of the Levant continental margin, eastern Mediterranean. Tectonophysics, 46, 313–331.
    [Google Scholar]
  5. Ben-Avraham, Z., Ginzburg, A., Makris, J. & Eppelbaum, L.
    2002. Crustal structure of the Levant Basin, eastern Mediterranean. Tectonophysics, 346, 23–43.
    [Google Scholar]
  6. Ben-Gai, Y., Ben-Avraham, Z., Buchbinder, B. & Kendall, C.G.S.C.
    2005. Post-Messinian evolution of the Southeastern Levant Basin based on two-dimensional stratigraphic simulation. Marine Geology, 221, 359–379.
    [Google Scholar]
  7. Bertoni, C. & Cartwright, J.A.
    2006. Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (eastern Mediterranean). Sedimentary Geology, 188, 93–114.
    [Google Scholar]
  8. 2007. Major erosion at the end of the Messinian Salinity Crisis: evidence from the Levant Basin, eastern Mediterranean. Basin Research, 19, 1–18.
    [Google Scholar]
  9. Brun, J.-P. & Fort, X.
    2011. Salt tectonics at passive margins: Geology versus models. Marine and Petroleum Geology, 28, 1123–1145.
    [Google Scholar]
  10. 2012. Salt tectonics at passive margins: geology versus models-Reply. Marine and Petroleum Geology, 37, 195–208.
    [Google Scholar]
  11. Buchbinder, B., Martinotti, G.M., Siman-Tov, R. & Zilberman, E.
    1993. Temporal and spatial relationships in Miocene reef carbonates in Israel. Palaeogeography, Palaeoclimatology, Palaeoecology, 101, 97–116.
    [Google Scholar]
  12. Cartwright, J. & Jackson, M.P.A.
    2008. Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Geological Society of America Bulletin, 120, 399–413.
    [Google Scholar]
  13. Cartwright, J., Jackson, M., Dooley, T. & Higgins, S.
    2012. Strain partitioning in gravity-driven shortening of a thick, multilayered evaporite sequence. In: Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T. & Hodgkinson, R. (eds) Salt Tectonics, Sediments and Prospectivity. Geological Society, London, Special Publications, 363, 449–470, http://doi.org/10.1144/SP363.21
    [Google Scholar]
  14. Chaumillon, E. & Mascle, J.
    1997. From foreland to forearc domains: New multichannel seismic reflection survey of the Mediterranean ridge accretionary complex (eastern Mediterranean). Marine Geology, 138, 237–259.
    [Google Scholar]
  15. Chaumillon, E., Mascle, J. & Hoffmann, H.
    1996. Deformation of the western Mediterranean Ridge: Importance of Messinian evaporitic formations. Tectonophysics, 263, 163–190.
    [Google Scholar]
  16. Cobbold, P.R. & Szatmari, P.
    1991. Radial gravitational gliding on passive margins. Tectonophysics, 188, 249–289.
    [Google Scholar]
  17. Diegel, F.A., Karlo, J.F., Schuster, D.C., Shoup, R.C. & Tauvers, P.R.
    1995. Cenozoic structural evolution and tectono-stratigraphic framework of the northern Gulf coast continental margin. In: Jackson, M.P.A., Roberts, D.G. & Snelson, S. (eds) Salt Tectonics: A Global Perspective. American Association of Petroleum Geologists, Memoirs, 65, 109–151.
    [Google Scholar]
  18. Druckman, Y., Buchbinder, B., Martinotti, G.M., Tov, R.S. & Aharon, P.
    1995. The buried Afiq Canyon (eastern Mediterranean, Israel): a case study of a Tertiary submarine canyon exposed in Late Messinian times. Marine Geology, 123, 167–185.
    [Google Scholar]
  19. Duval, B.B. & Montadert, L.
    1977. Introduction to the structural history of the Mediterranean basins. In: Duval, B.B. & Montadert, L. (eds) Structural History of Mediterranean Basins. Technip, Paris, 1–12.
    [Google Scholar]
  20. Emeis, K., Robertson, A. & Richter, C.
    1996. Palaeoceanography and sapropel introduction. In: Emeis, K.-C. , Robertson, A.H.F. et al. (eds) Proceedings of the Ocean Drilling Program, Initial Reports, Volume 160. Ocean Drilling Program, College Station, TX, 21–28.
    [Google Scholar]
  21. Fort, X., Brun, J.P. & Chauvel, F.
    2004. Salt tectonics on the Angolan margin, synsedimentary deformation processes. American Association of Petroleum Geologists Bulletin, 88, 1523–1544.
    [Google Scholar]
  22. Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel-Daveau, J.-C., Blanpied, C. & Ringenbach, J.-C.
    2011. The southernmost margin of the Tethys realm during the Mesozoic and Cenozoic: Initial geometry and timing of the inversion processes. Tectonics, 30, TC3002.
    [Google Scholar]
  23. Gardosh, M.A. & Druckman, Y.
    2006. Seismic stratigraphy, structure and tectonic evolution of the Levant Basin, offshore Israel. In: Robertson, A.H.F. & Mountrakis, D. (eds) Tectonic Development of the Eastern Mediterranean Region. Geological Society, London, Special Publications, 260, 201–227, http://doi.org/10.1144/GSL.SP.2006.260.01.09
    [Google Scholar]
  24. Gardosh, M., Druckman, Y., Buchbinder, B. & Rybakov, M.
    2008. The Levant Basin Off Shore Israel: Stratigraphy, Structure, Tectonic Evolution and Implications for Hydrocarbon Exploration. Geophysical Institute of Israel Report 429.
    [Google Scholar]
  25. Garfunkel, Z.
    1984. Large-scale submarine rotational slumps and growth faults in the eastern Mediterranean. Marine Geology, 55, 305–324.
    [Google Scholar]
  26. 1998. Constrains on the origin and history of the eastern Mediterranean basin. Tectonophysics, 298, 5–35.
    [Google Scholar]
  27. Garfunkel, Z. & Almagor, G.
    1984. Geology and structure of the continental margin off northern Israel and the adjacent part of the Levantine Basin. Marine Geology, 62, 105–131.
    [Google Scholar]
  28. Gaullier, V., Mart, Y., Bellaiche, G., Vendeville, B., Mascle, J. & Zitter, T.
    & Second Leg PRISMED II Scientific Party 2000. Salt tectonics in and around the Nile deep-sea fan: insights from the ‘PRISMED II’ cruise. In: Vendeville, B.C., Mart, Y. & Vigneresse, J.L. (eds) Salt, Shale and Igneous Diapirs in and around Europe. Geological Society, London, Special Publications, 174, 111–129, http://doi.org/10.1144/GSL.SP.1999.174.01.07
    [Google Scholar]
  29. Ge, H., Jackson, M.P. & Vendeville, B.C.
    1997. Kinematics and dynamics of salt tectonics driven by progradation. American Association of Petroleum Geologists Bulletin, 81, 398–423.
    [Google Scholar]
  30. Girdler, R.W.
    1990. The Dead Sea transform fault system. Tectonophysics, 180, 1–13.
    [Google Scholar]
  31. Gomez, F., Khawlie, M., Tabet, C., Darkal, A.N., Khair, K. & Barazangi, M.
    2006. Late Cenozoic uplift along the northern Dead Sea transform in Lebanon and Syria. Earth and Planetary Science Letters, 241, 913–931.
    [Google Scholar]
  32. Govers, R., Meijer, P. & Krijgsman, W.
    2009. Regional isostatic response to Messinian Salinity Crisis events. Tectonophysics, 463, 109–129.
    [Google Scholar]
  33. Gradmann, S., Hübscher, C., Ben-Avraham, Z., Gajewski, D. & Netzeband, G.
    2005. Salt tectonics off northern Israel. Marine and Petroleum Geology, 22.
    [Google Scholar]
  34. Guerra, M.C.M. & Underhill, J.R.
    2012. Role of halokinesis in controlling structural styles and sediment dispersal in the Santos Basin, offshore Brazil. In: Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T. & Hodgkinson, R. (eds) Salt Tectonics, Sediments and Prospectivity. Geological Society, London, Special Publications, 363, 175–206, http://doi.org/10.1144/SP363.9
    [Google Scholar]
  35. Gvirtzman, Z., Reshef, M., Buch-Leviatan, O. & Ben-Avraham, Z.
    2013. Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis. Earth and Planetary Science Letters, 379, 108–119.
    [Google Scholar]
  36. Hawie, N., Gorini, C., Deschamps, R., Nader, F.H., Montadert, L., Granjeon, D. & Baudin, F.
    2013. Tectono-stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Marine and Petroleum Geology, 48, 392–410.
    [Google Scholar]
  37. Horowitz, A.
    2001. The Jordan Rift Valley. Taylor & Francis, London.
    [Google Scholar]
  38. Hsü, K.J., Stoffers, P. & Ross, D.A.
    1978. Messinian evaporites from the Mediterranean and Red Seas. Marine Geology, 26, 71–72.
    [Google Scholar]
  39. Hudec, M.R. & Jackson, M.P.A.
    2002. Structural segmentation, inversion, and salt tectonics on a passive margin: Evolution of the Inner Kwanza Basin, Angola. Geological Society of America Bulletin, 114, 1222–1244.
    [Google Scholar]
  40. 2004. Regional restoration across the Kwanza Basin, Angola: Salt tectonics triggered by repeated uplift of a metastable passive margin. American Association of Petroleum Geologists Bulletin, 88, 971–990.
    [Google Scholar]
  41. 2007. Terra infirma: Understanding salt tectonics. Earth-Science Reviews, 82, 1–28.
    [Google Scholar]
  42. Hudec, M.R., Jackson, M.P.A. & Schultz-Ela, D.D.
    2009. The paradox of minibasin subsidence into salt: Clues to the evolution of crustal basins. Geological Society of America Bulletin, 121, 201–221.
    [Google Scholar]
  43. Jackson, J. & McKenzie, D.
    1988. The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International, 93, 45–73.
    [Google Scholar]
  44. Jackson, M., Vendeville, B.C. & Schultz-Ela, D.D.
    1994. Structural Dynamics of Salt Systems. Annual Review of Earth and Planetary Sciences, 22, 93–117.
    [Google Scholar]
  45. Krijgsman, W., Hilgen, F., Raffi, I., Sierro, F. & Wilson, D.
    1999. Chronology, causes and progression of the Messinian salinity crisis. Nature, 400, 652–655.
    [Google Scholar]
  46. Le Pichon, X., Lybéris, N., Angelier, J. & Renard, V.
    1982. Strain distribution over the east Mediterranean ridge: A synthesis incorporating new Sea-Beam data. Tectonophysics, 86, 243–274.
    [Google Scholar]
  47. Letouzey, J., Colletta, B., Vially, R. & Chermette, J.C.
    1995. Evolution of salt-related structures in compressional settings. In: Jackson, M.P.A., Roberts, D.G. & Snelson, S. (eds) Salt Tectonics: a Global Perspective. American Association of Petroleum Geologists, Memoirs, 65, 29–40.
    [Google Scholar]
  48. Lofi, J., Déverchère, J. et al.
    2011. Atlas of the ‘Messinian Salinity Crisis’ Seismic Markers in the Mediterranean and Black Seas. Commission for the Geological Map of the World (CGGMW). Mémoires de la Société Géologique de France, 179.
    [Google Scholar]
  49. Loncke, L., Gaullier, V., Mascle, J., Vendeville, B. & Camera, L.
    2006. The Nile deep-sea fan: An example of interacting sedimentation, salt tectonics, and inherited subsalt paleotopographic features. Marine and Petroleum Geology, 23, 297–315.
    [Google Scholar]
  50. Loncke, L., Vendeville, B.C., Gaullier, V. & Mascle, J.
    2010. Respective contributions of tectonic and gravity-driven processes on the structural pattern in the eastern Nile deep-sea fan: insights from physical experiments. Basin Research, 22, 765–782.
    [Google Scholar]
  51. Macgregor, D.S.
    2012. The development of the Nile drainage system: integration of onshore and offshore evidence. Petroleum Geoscience, 18, 417–431, http://doi.org/10.1144/petgeo2011-074
    [Google Scholar]
  52. Manzi, V., Gennari, R., Hilgen, F., Krijgsman, W., Lugli, S., Roveri, M. & Sierro, F.J.
    2013. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova, 25, 315–322.
    [Google Scholar]
  53. Mart, Y.
    1987. Superpositional tectonic patterns along the continental margin of the southeastern Mediterranean: a review. Tectonophysics, 140, 213–232.
    [Google Scholar]
  54. 1993. The sedimentologic and geomorphologic provinces of the Nile Fan. In: Rhodes, E.G. & Moslow, T.S. (eds) Marine Clastic Reservoirs. Springer, New York, 101–112.
    [Google Scholar]
  55. Mart, Y. & Ben-Gai, Y.
    1982. Some depositional patterns at continental margin of southeastern Mediterranean Sea. American Association of Petroleum Geologists Bulletin, 4, 460–470.
    [Google Scholar]
  56. Mascle, J., Benkhelil, J., Bellaiche, G., Zitter, T., Woodside, J. & Loncke, L.
    2000. Marine geologic evidence for a Levantine–Sinai plate, a new piece of the Mediterranean puzzle. Geology, 28, 779–782.
    [Google Scholar]
  57. McClusky, S., Balassanian, S. et al.
    2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695.
    [Google Scholar]
  58. Netzeband, G.L., Hübscher, C.P. & Gajewski, D.
    2006. The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology, 230, 249–273.
    [Google Scholar]
  59. Peel, F.J.
    2014. How do salt withdrawal minibasins form? Insights from forward modelling, and implications for hydrocarbon migration. Tectonophysics, 630, 222–235.
    [Google Scholar]
  60. Peel, F.J., Travis, C.J. & Hossack, J.R.
    1995. Genetic structural provinces and salt tectonics of the Cenozoic offshore U.S. Gulf of Mexico: a preliminary analysis. In: Jackson, M.P.A., Roberts, D.G. & Snelson, S. (eds) Salt Tectonics: A Global Perspective. American Association of Petroleum Geologists, Memoirs, 65, 153–175.
    [Google Scholar]
  61. Quirk, D.G., Schodt, N., Lassen, B., Ings, S.J., Hsu, D., Hirsch, K.K. & Von Nicolai, C.
    2012. Salt tectonics on passive margins: Examples from the Santos, Campos and Kwanza basins. In: Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T. & Hodgkinson, R. (eds) Salt Tectonics, Sediments and Prospectivity. Geological Society, London, Special Publications, 363, 207–244, http://doi.org/10.1144/SP363.10
    [Google Scholar]
  62. Reiche, S., Hübscher, C. & Beitz, M.
    2014. Fault-controlled evaporite deformation in the Levant Basin, eastern Mediterranean. Marine Geology, 354, 53–68.
    [Google Scholar]
  63. Robertson, A.H.F.
    1998. Tectonic significance of the Eratosthenes Seamount: a continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Program Leg 160). Tectonophysics, 298, 63–82.
    [Google Scholar]
  64. Robertson, A.H.F. & Dixon, J.E.
    1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean. In: Dixon, J.E. & Robertson, A.H.F. (eds) The Geological Evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17, 1–74, http://doi.org/10.1144/GSL.SP.1984.017.01.02
    [Google Scholar]
  65. Robertson, A.H.F. & Mountrakis, D.
    2006. Tectonic development of the Eastern Mediterranean region: an introduction. In: Robertson, A.H.F. & Mountrakis, D. (eds) Tectonic Development of the Eastern Mediterranean Region. Geological Society, London, Special Publications, 260, 1–9, http://doi.org/10.1144/GSL.SP.2006.260.01.01
    [Google Scholar]
  66. Rouchy, J.
    1982. Observations on a paleogeographic interpretation of the Mediterranean area during the deposition of the Messinian evaporites based on the study of the periMediterranean erosional surfaces. Bulletin de la Societe Geologique de France, 24, 653–657.
    [Google Scholar]
  67. Rowan, M.G., Jackson, M.P.A. & Trudgill, B.D.
    1999. Salt-related fault families and fault welds in the northern Gulf of Mexico. American Association of Petroleum Geologists Bulletin, 83, 1454–1484.
    [Google Scholar]
  68. Rowan, M.G., Peel, F.J. & Vendeville, B.
    2004. Gravity-driven fold belts on passive margins. In: McClay, K.R. (ed.) Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, Memoirs, 82, 157–183.
    [Google Scholar]
  69. Rowan, M.G., Peel, F.J., Vendeville, B.C. & Gaullier, V.
    2012. Salt tectonics at passive margins: Geology versus models–Discussion. Marine and Petroleum Geology, 37, 184–194.
    [Google Scholar]
  70. Ryan, W.B.F.
    1973. Geodynamic implication of the Messinian crisis of salinity. In: Drooger, C.W. (ed.) Messinian Events in the Mediterranean. Elsevier, Amsterdam, 26–38.
    [Google Scholar]
  71. 1978. Messinian badlands on the southeastern margin of the Mediterranean Sea. Marine Geology, 27, 349–363.
    [Google Scholar]
  72. Ryan, W.B.F. & Cita, M.B.
    1978. The nature and distribution of Messinian erosional surfaces – Indicators of a several-kilometer-deep Mediterranean in the Miocene. Marine Geology, 27, 193–230.
    [Google Scholar]
  73. Schultz-Ela, D.D.
    2001. Excursus on gravity gliding and gravity spreading. Journal of Structural Geology, 23, 725–731.
    [Google Scholar]
  74. Sestini, G.
    1984. Tectonics and sedimentary history of the NE African margin (Egypt–Libya). In: Dixon, J.E. & Robertson, A.H.F. (eds) The Geological Evolution of the Eastern Mediterranean. Geological Society, London, Special Publications, 17, 161–175, http://doi.org/10.1144/GSL.SP.1984.017.01.10
    [Google Scholar]
  75. 1989. Nile delta: a review of depositional environments and geological history. In: Whateley, M.K.G. & Pickering, K.T. (eds) Deltas: Sites and Traps for Fossil Fuel. Geological Society, London, Special Publications, 41, 99–127, http://doi.org/10.1144/GSL.SP.1989.041.01.09
    [Google Scholar]
  76. Smith, S.
    1976. Diapiric Structures in the eastern Mediterranean Herodotus Basin. Earth and Planetary Science Letters, 32, 62–68.
    [Google Scholar]
  77. Stampfli, G. & Borel, G.
    2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17–33.
    [Google Scholar]
  78. Stride, A., Belderson, R. & Kenyon, N.
    1977. Evolving miogeanticlines of the East Mediterranean (Hellenic, Calabrian and Cyprus outer ridges). Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences, 284, 255–285.
    [Google Scholar]
  79. Szatmari, P., Guerra, M.C.M. & Pequeno, M.A.
    1996. Genesis of large counter-regional normal fault by flow of Cretaceous salt in the South Atlantic Santos Basin, Brazil. In: Alsop, G.I., Blundell, D.J. & Davison, I. (eds) Salt Tectonics. Geological Society, London, Special Publications, 100, 259–264, http://doi.org/10.1144/GSL.SP.1996.100.01.16
    [Google Scholar]
  80. Tari, G., Ashton, P. & Coterill, K.
    2002. Are West Africa deepwater salt tectonics analogous to the Gulf of Mexico?Oil & Gas Journal, 100, 73–73.
    [Google Scholar]
  81. Vendeville, B.C.
    2005. Salt tectonics driven by sediment progradation: Part I – Mechanics and kinematics. American Association of Petroleum Geologists Bulletin, 89, 1071–1079.
    [Google Scholar]
  82. Voogd, B. & Truffert, C.
    1992. Two-ship deep seismic soundings in the basins of the eastern Mediterranean Sea (Pasiphae cruise). Geophysical Journal International, 109, 536–552.
    [Google Scholar]
  83. Wagner, B.H. & Jackson, M.P.
    2011. Viscous flow during salt welding. Tectonophysics, 510, 309–326.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-034
Loading
/content/journals/10.1144/petgeo2016-034
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error