1887
Volume 28, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Argentina's offshore sedimentary basins cover a vast area on one of the widest continental margins on the planet, yet they remain underexplored today. Previous exploration drilling has failed to encounter commercial volumes of hydrocarbons, in part due to the poor seismic imaging of legacy 1960s–1990s 2D seismic data, and to the majority of wells being drilled on structural highs outside of the source rock kitchens. In this study, we reviewed 52 000 km of recently acquired (2017–2018) regional 2D long-offset seismic data with broadband pre-stack time (PSTM) and depth migration (PSDM) processing. We identified five major structural domains with hydrocarbon prospectivity on the Northern Margin of Argentina and four on the Southern Margin, and the presence of previously unseen structural and stratigraphic traps involving sequences assigned to proven regional source rocks and reservoirs in Permian, Jurassic and Cretaceous rocks. The source and reservoir rocks, petroleum systems, and play types present in the deepwater of the undrilled Argentina Basin represent a true frontier for hydrocarbon exploration. Pseudo relief attribute seismic displays and amplitude v. angle (AVA) analysis are demonstrated to be valuable tools in predicting the stratigraphy of the basins. A new framework for understanding the oil and gas prospectivity of the study area is presented.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-132
2022-02-28
2024-04-26
Loading full text...

Full text loading...

References

  1. Allsopp, H.L. and Kolbe, P . 1965. Isotopic Age Determinations on the Cape Granite and Intruded Malmesbury Sediments, Cape Peninsula, South Africa. Geochimica et Cosmochimica Acta, 29, 1115–1130, https://doi.org/10.1016/0016-7037(65)90115-8
    [Google Scholar]
  2. Anka, Z., Loegering, M. J., di Primio, R., Marchal, D., Rodríguez, J.F. and Vallejo, E . 2014. Distribution and origin of natural gas leakage in the Colorado Basin, offshore Argentina Margin, South America: seismic interpretation and 3D basin modelling. Geologica Acta, 12, 269–285, ALAGO Special Publication, December 2014, https://doi.org/10.1344/GeologicaActa2014.12.4.1
    [Google Scholar]
  3. Autin, J., Schec-Wenderoth, M. et al. 2013. Colorado Basin 3D Structure and Evolution, Argentine passive margin. Tectonophysics, 604, 264–279, https://doi.org/10.1016/j.tecto.2013.05.019
    [Google Scholar]
  4. Baristeas, N., Anka, Z., Di Primio, R., Marchal, D., Rodríguez, J.F. and Dominguez, R.F. 2013. Distribution of hydrocarbon leakage indicators in the Malvinas Basin, offshore Argentine continental margin. Tectonophysics, 60, 56–74, https://doi.org/10.1016/j.tecto.2013.06.009
    [Google Scholar]
  5. Barker, P. , Dalziel, I.W.D. et al.1977. DSDP Volume XXXVI, Site 330, https://doi.org/10.2973/dsdp.proc.36.1977
  6. Becker, K. , Franke, D. et al.2014. Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental break-up. Solid Earth Discussions, 6, 1335–1370, https://doi.org/10.5194/se-5-1011-2014
    [Google Scholar]
  7. Bekinsale, R., Tarney, J., Dombyshire, D. and Humm, H . 1977. Rb-Sr and K-Ar determinations of the Falkland Plateau basement at Site 330 D. S.D.P. Initial Reports, 36, 923–928.
    [Google Scholar]
  8. Biddle, K.T., Uliana, M.A., Mitchum, Jr, R.M., Fitzgerald, M.G. and Wright, R.C. 1986. The stratigraphic and structural evolution of the central and eastern Magallanes Basin, southern South America. International Association of Sedimentologists Special Publication, 8, 41–61.
    [Google Scholar]
  9. Blaich, O.A., Faleide, J.I., Tsikalas, F., Franke, D. and Leon, E . 2009. Crustal-scale architecture and segmentation of the Argentine margin and its conjugate off South Africa. Geophysical Journal International, 178, 85–105, https://doi.org/10.1111/j.1365-246X.2009.04171.x
    [Google Scholar]
  10. Bulhões, É.M. and Nogueira de Amorim, W. 2005. Princípio da SismoCamada Elementar e sua aplicação à Técnica Volume de Amplitudes (tecVA). 9th International Congress of the Brazilian Geophysical Society & EXPOGEF, Brazilian Geophysical Society, Salvador de Bahía, 1–6, https://doi.org/10.1190/sbgf2005-275
    [Google Scholar]
  11. Burgess, P.M., Winefield, P., Minzoni, M. and Elders, C . 2013. Methods for identification of isolated carbonate buildups from seismic reflection data. AAPG Bulletin, 97, 1071–1098, https://doi.org/10.1306/12051212011
    [Google Scholar]
  12. Calamar x-1 . 1981. Final Well Report. Esso E.P.A. (Unpublished) .
  13. Chauvet, F., Sapin, F., Geoffroy, L., Ringenbach, J. and Ferry, J . 2021. Conjugate volcanic passive margins in the Austral segment of the South Atlantic – Architecture and development. Earth-Science Reviews, 212, 1–34, https://doi.org/10.1016/j.earscirev.2020.103461
    [Google Scholar]
  14. Chemale, F., Ramos, V.A., Naipauer, M., Girelli, T.J. and Vargas, M . 2018. Age of basement rocks from the Maurice Ewing Bank and the Falkland/Malvinas Plateau. Precambrian Research, 314, 28–40, https://doi.org/10.1016/j.precamres.2018.05.026
    [Google Scholar]
  15. Ciclon x-1 1979. Informe de Finalizacion Pozo Ci.es-1. YPF (Unpublished).
  16. Conti, B., Perinotto, J.A.J., Veroslavsky, G., Castillo, M.G., de Santa Ana, H., Soto, M. and MoralesE . 2017. Speculative petroleum systems of the southern Pelotas Basin, offshore Uruguay. Marine and Petroleum Geology, 83, 1–25, https://doi.org/10.1016/j.marpetgeo.2017.02.022
    [Google Scholar]
  17. Comision Nacional del Limite Exterior de la Plataforma Continental . 2017. The Argentine Continental Margin between 35° and 55° South Latitude in the Context of Article 76 of the United Nations Convention on the Law of the Sea .
  18. Cruz del Sur x-1Well Report . 1994. Union Texas Argentina Ltd. (Unpublished)
  19. Dominguez, F., Marchal, D., Sigismondi, M., Espejón, C. and Vallejo, E. 2011. Caracterizacion de Dominios Estructurales e Influencia de Estructuras Preexistentes en Hemigrábenes de Rift en el Sector Centro-Norte de la Plataforma Contiental Argentina. XVIII Congreso Geologico Argentino, Neuquén, Argentina.
    [Google Scholar]
  20. Du Toit, A.L. 1937. Our Wandering Continents. An Hypothesis of Continental Drifting. Oliver & Boyd, London.
    [Google Scholar]
  21. Eastwell, D. 2019. Class IV AVA Anomalies in High TOC Shale, a Case Study from Namibia, West Africa. Abstract 81st EAGE Conference & Exhibition 2019, London, UK.
    [Google Scholar]
  22. Eastwell, D., Hodgson, N. and Rodriguez, K . 2018. Source rock characterization in frontier basins- a global approach. First Break, 26, 53–60, https://doi.org/10.3997/1365-2397.n0131
    [Google Scholar]
  23. Falvey, D.A. 1974. The development of continental margins in plate tectonic theory. The APEA Journal, 14, 95–106.
    [Google Scholar]
  24. Farrer, B. and Rudling, C. 2015. South falkland basin: darwinian evolution. GEOExpro 12 No. 1.
  25. Franke, D., Neben, S., Schreckenberger, B., Schultze, A., Stiller, M. and Krawczyk, C.M . 2006. Crustal structure across the Colorado Basin, offshore Argentina. Geophysical Journal International, 165, 850–864, https://doi.org/10.1111/j.1365-246X.2006.02907.x
    [Google Scholar]
  26. Franke, D., Neben, S., Ladage, S., Schreckenberger, B. and Hinz, K. 2007. Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic. Marine Geology, 244, 44–67, https://doi.org/10.1016/j.margeo.2007.06.009
    [Google Scholar]
  27. Franke, D., Ladage, S. et al. 2010. Birth of a Volcanic Margin off Argentina, South Atlantic. Geochemistry Geophysics Geosystems, 11, https://doi.org/10.1029/2009gc002715
    [Google Scholar]
  28. Fryklund, R.E. 1995. Estrella x-1 Well Summary.Union Texas (Argentina) Ltd. (Unpublished ) .
  29. Fryklund, R., Marshall, A. and Stevens, J. 1996. Cuenca del Colorado. In: Ramos, V.A. and Turic, M.A. (eds) Geologia y recursos naturales de la plataforma continental Argentina. XIII Congreso Geologico Argentino y III Congreso de Exploracion de Hidrocarburos, Asociacion Geologica. Instituto Argentino del Petroleo, Buenos Aires, Argentina135–158.
    [Google Scholar]
  30. Galeazzi, J.S. 1998. Structural and Stratigraphic Evolution of the Western Malvinas Basin, Argentina. AAPG Bulletin, 82, 596–636.
    [Google Scholar]
  31. Geminis x-1 . 2004. Geological end of well report. Total (Unpublished) .
  32. Gerster, R., Welsink, H., Ansa, A. and Raggio, F. 2011. Cuenca de Colorado. VIII Congreso deExploración y Desarrollo de Hidrocarburos Simposio Cuencas Argentinas: Visión Actual, 65–80, Neuquén, Argentina.
    [Google Scholar]
  33. Ghidella, M.E., Paterlini, M., Kovacs, L.C. and Rodríguez, G. 1995. Magnetic anomalies on the Argentine continental shelf. Proceedings of the 4th international Congress of the BGA/1st SEG/ULG Latin American Conference, Rio de Janeiro, 24.
    [Google Scholar]
  34. Ghiglione, M.C., Quinteros, J., Yagupsky, D., Bonillo-Martínez, P., Hlebszevtich, J. and Quesada, S . 2010. Structure and tectonic history of the foreland basins of southernmost South America. Journal of South American Earth Sciences, 29, 262–277, https://doi.org/10.1016/j.jsames.2009.07.006
    [Google Scholar]
  35. Ghiglione, M.C., Sue, C., Ramos, M.E., Tobal, J.E. and Gallardo, R.E . 2016. The Relation between Neogene Denudation of the Southernmost Andes and Sedimentation in the Offshore Argentine and Malvinas Basins during the Opening of the Drake Passage. Geodynamic Evolution of the Southernmost Andes, Springer Earth System Sciences, https://doi.org/10.1007/978-3-319-39727-6_5109
    [Google Scholar]
  36. Hartwig, A., di Primio, R., Anka, Z. and Horsfield, B . 2012. Source rock characteristics and compositional kinetic models of Cretaceous organic-rich black shales offshore southwestern Africa. Organic Geochemistry, 51, 17–34, https://doi.org/10.1016/j.orggeochem.2012.07.008
    [Google Scholar]
  37. Hernandez-Molina, F.J., Paterlini, M. et al. 2010. Giant mounded drifts in the Argentine Continental Margin: Origins, and global implications for the history of thermohaline circulation. Marine and Petroleum Geology, 27, 1508–1530, https://doi.org/10.1016/j.marpetgeo.2010.04.003
    [Google Scholar]
  38. Hernández-Molina, F., Campbell, S. et al. 2018. Large bedforms on contourite terraces: sedimentary and conceptual implications. Geology, 46, 27–39, https://doi.org/10.1130/G39655.1
    [Google Scholar]
  39. Hinz, K., Neben, S., Schreckenberger, B., Roeser, H.A., Block, M., Goncalves de Souza, K. and Meyer, H. 1999. The Argentine continental margin north of 48°S: sedimentary successions, volcanic activity during break-up. Marine and Petroleum Geology, 16, 1–25, https://doi.org/10.1016/S0264-8172(98)00060-9
    [Google Scholar]
  40. IHS Markit . 2019. EDIN v 8.3, Commercial E&P Activity Database.
  41. Jungslager, E.H.A. 1999. Petroleum habitats of the Atlantic margin of South Africa. In: Cameron, N.R., Bate, R.H. and Clure, V.S. (eds) The Oil and Gas Habitats of the South Atlantic. Geological Society, London, Special Publications , 153, 153–168, https://doi.org/10.1144/GSL.SP.1999.153.01.10
    [Google Scholar]
  42. Keidel, J . 1916. La Geología de las Sierras de la Provincia de Buenos Aires y sus relaciones con las montañas de Sud África y los Andes. Anales del Ministerio de Agricultura de la Nación, Sección Geología, Mineralogía y Minería, 11, 1–77. Buenos Aires.
    [Google Scholar]
  43. Koopmann, H., Franke, D., Schreckenberger, B., Schulz, H., Hartwig, A., Stollhofen, H. and di Primio, R . 2014. Segmentation and volcano-tectonic characteristics along the SW African continental margin, South Atlantic, as derived from multichannel seismic and potential field data. Marine and Petroleum Geology, 50, 22–39, https://doi.org/10.1016/j.marpetgeo.2013.10.016
    [Google Scholar]
  44. Krill x-1 . 1981. EXLOG Report. Esso E.P.A. (Unpublished) .
  45. Larson, R.L. and Ladd, J.W . 1973. Evidence for the Opening of the South Atlantic in the Early Cretaceous. Nature, 246, 23/11/73, https://doi.org/10.1038/246209a0
    [Google Scholar]
  46. Loegering, M.J., Anka, Z. et al. 2013. Tectonic evolution of the Colorado Basin, offshore Argentina, inferred from seismo-stratigraphy and depositional rates analysis. Tectonophysics, 604, 245–263, https://doi.org/10.1016/j.tecto.2013.02.008
    [Google Scholar]
  47. Loseth, H., Wensaas, L., Gading, M., Duffault, K. and Springer, M . 2011. Can hydrocarbon source rocks be identified on seismic data?Geology, 39, 1167–1170, https://doi.org/10.1130/G32328.1
    [Google Scholar]
  48. Lovecchio, J.P., Rohais, S. et al. V.A. 2018. Multistage rifting evolution of the Colorado basin (offshore Argentina): evidence for extensional settings prior to the South Atlantic opening. Terra Nova, 30, 359–368, https://doi.org/10.1111/ter.12351
    [Google Scholar]
  49. Lovecchio, J.P., Naipauer, M. et al. 2019. Rifting evolution of the Malvinas basin, offshore Argentina- new constraints from zircon U-Pb geochronology and seismic characterization. Journal of South American Earth Sciences, 95, https://doi.org/10.1016/j.jsames.2019.102253
    [Google Scholar]
  50. Lovecchio, J.P., Rohais, S., Ramos, V.A., Joseph, P. and Bolatti, N . 2020. Mesozoic rifting evolution of SW Gondwana: a poly-phased, subduction-related, extensional history responsible for basin formation along the Argentinean Atlantic margin. Earth Science Reviews, 203, 103–138, https://doi.org/10.1016/j.earscirev.2020.103138
    [Google Scholar]
  51. Malvinas x-1 . 2012. Informe final. Repsol-YPF, (Unpublished).
  52. Max, M.D., Ghidella, M., Kovacs, L., Paterlini, M. and Valladares, J.A . 1999. Geology of the Argentine continental shelf and margin from aeromagnetic survey. Marine and Petroleum Geology, 16, 41–64, https://doi.org/10.1016/S0264-8172(98)00063-4
    [Google Scholar]
  53. Morales, E., Conti, B., Soto, M. and Viera-Honegger, B . 2019. Risks inherent in the Cenozoic stratigraphic plays in basins of the Uruguayan continental margin. Marine and Petroleum Geology, 112, 1–13, https://doi.org/10.1016/j.marpetgeo.2019.104072
    [Google Scholar]
  54. Nürnberg, D. and Müller, R.D . 1991. The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics, 191, 27–53, https://doi.org/10.1016/0040-1951(91)90231-G
    [Google Scholar]
  55. Ormazabal, J.P., Tassone, A. et al. 2019. Structure of the wedge-top and foredeep of the Magallanes-Malvinas basins between 62°W and 67°W (SW Atlantic Ocean). Journal of South American Earth Sciences, 93, 364–381, https://doi.org/10.1016/j.jsames.2019.04.016
    [Google Scholar]
  56. Ormazabal, J.P., Isola, J.I. et al. 2020. Basement structural control in Magallanes-Malvinas fold and thrust belt, offshore Argentina. Journal of South American Earth Sciences, 10, https://doi.org/10.1016/j.jsames.2020.102708
    [Google Scholar]
  57. Pangaro, F. and Ramos, V.A . 2012. Paleozoic crustal blocks of onshore and offshore central Argentina: new pieces of the southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins. Marine and Petroleum Geology, 37, 162–183, https://doi.org/10.1016/j.marpetgeo.2012.05.010
    [Google Scholar]
  58. Pangaro, F., Ramos, V.A. and Pazos, P.J . 2016. The Hesperides basin: a continental-scale upper Palaeozoic to Triassic basin in southern Gondwana. Basin Research, 28, 685–711, https://doi.org/10.1111/bre.12126https://doi.org/10.1111/bre.12126
    [Google Scholar]
  59. Paton, D.A., Pindell, J., Mcdermott, K., Bellingham, P. and Horn, B . 2017. Evolution of seaward-dipping reflectors at the onset of oceanic crust formation at passive margins: insights from the South Atlantic. Geology, 45, 439–442, https://doi.org/10.1130/G38706.1
    [Google Scholar]
  60. Puelche-1ST . 1977. Informe final. YPF, (Unpublished).
  61. Raggio, F., Gerster, R. and Welsink, H . 2012. Cuencas del Salado y Punta del Este. Petrotecnia, Ano LIII No. 6, 80–88.
    [Google Scholar]
  62. Raggio, F., Welsink, H., Fiptiani, N., Prayitno, W. and Gerster, R. 2011. Cuenca Malvinas. VIII Congr. Explor. y Desarro. Hidrocarburos Simp. Cuencas Argentinas visión actual, Mar del Plata, Argentina, 1–16.
    [Google Scholar]
  63. Ramos, V.A . 1984. Patagonia: un continente paleozoico a la deriva?Actas 9° Congreso Geológico Argentino, 2, 311–325.
    [Google Scholar]
  64. Ramos, V.A . 1987. Tectonostratigraphy, as applied to analysis of South African Phanerozoic Basins by H. de la R. Winter, discussion. Transactions Geological Society South Africa, 87, 169–179.
    [Google Scholar]
  65. Ramos, V.A . 1988. Late proterozoic-early paleozoic of South America – a collisional history. Episodes, 11, 168–174, https://doi.org/10.18814/epiiugs/1988/v11i3/003
    [Google Scholar]
  66. Ramos, V.A . 2008. Patagonia: a Paleozoic continent adrift?Journal of South American Earth Sciences, 26, 235–251, https://doi.org/10.1016/j.jsames.2008.06.002
    [Google Scholar]
  67. Ramos, V.A. and Naipauer, M . 2014. Patagonia: Where does it come from?Journal of Iberian Geology, 40, 367–379, https://doi.org/10.5209/rev_JIGE.2014.v40.n2.45304
    [Google Scholar]
  68. Ramos, V.A., Lovecchio, J.P., Naipauer, M. and Pangaro, F . 2020. The collision of patagonia: geological facts and speculative interpretations. Ameghiniana, 57, 464–479, https://doi.org/10.5710/AMGH.27.05.2020.3352
    [Google Scholar]
  69. Rodrigues, S., Hernandez-Molina, F.J. and Kirby, A . 2020. A Late Cretaceous hybrid (turbidite-contourite) system along the Argentine Margin: paleoceanographic and conceptual implications. Marine and Petroleum Geology, 123, https://doi.org/10.1016/j.marpetgeo.2020.104768
    [Google Scholar]
  70. Rossello, E.A., Haring, C.E., Cardinali, G., Suarez, F., Lafitte, G.A. and Nevistic, A.V . 2008. Hydrocarbons and petroleum geology of Tierra del Fuego, Argentina. Geologica Acta, 6, 69–83.
    [Google Scholar]
  71. Salmon x-1 1981. Informe Final de Pozo. Esso E.P.A. (Unpublished).
  72. Salmon x-2 1982. Informe Final de Pozo. Esso E.P.A. (Unpublished).
  73. Sansom, P . 2018. Hybrid turbidite–contourite systems of the Tanzanian margin. Petroleum Geoscience, 24, 258–276, https://doi.org/10.1144/petgeo2018-044
    [Google Scholar]
  74. Sprague, A., Garfield, T. et al. 2005. Integrated Slope Channel Depositional Models: The Key to Successful Prediction of Reservoir Presence and Quality in Offshore West Africa. (Conference paper) CIPM, Cuarto E-Exitep: 1e13, https://www.researchgate.net/publication/263738022
  75. Tassone, A., Lodolo, E., Menichetti, M., Yagupsky, D., Caffau, M. and Vilas, J.F . 2008. Seismostratigraphic and structural setting of the Malvinas Basin and its southern margin (Tierra del Fuego Atlantic offshore). Geologica Acta, 6, 55–67.
    [Google Scholar]
  76. Urien, C.M., Martens, L.R. and Zambrano, J.J . 1976. The geology and tectonic framework of Southern Brazil, Uruguay, and Northern Argentina continental margin: their behavior during the Southern Atlantic Opening. Anais da Academia Brasileira de Ciencias, 48, 365–376.
    [Google Scholar]
  77. Union Texas (Argentina) Ltd . 1995. Corona Austral x-1 Well Summary. (Unpublished).
  78. Vayssaire, A. 2012. Simulation of petroleum migration in fine-grained rock by upscaling relative permeability curves: the Malvinas Basin, Offshore Argentina. In: Peters, K., Curry, D. and Kacewicz, M. (eds) Basin Modeling: New Horizons, in Research and Applications. AAPG Hedberg Series , 4, 247–257.
    [Google Scholar]
  79. Vazquez Lucero, S.E., Prezzi, C., Scheck-Wenderoth, M., Bott, J., Gomez Dacal, M.L., Balestrini, F.I. and Vizán, H. 2020. 3D gravity modelling of Colorado and Claromecó basins: new evidences for the evolution of the southwestern margin of Gondwana. International Journal of Earth Sciences, 110, https://doi.org/10.1007/s00531-020-01944-3
    [Google Scholar]
  80. Wegener, A . 1912. The formation of the continents. Geologische Rundschau, 3, 276–292, https://doi.org/10.1007/BF02202896
    [Google Scholar]
  81. Wilckens, H. , Miramontes, E. et al.2021. The erosive power of the Malvinas Current: influence of bottom currents on morpho-sedimentary features along the northern Argentine margin (SW Atlantic Ocean). Marine Geology, 439, https://doi.org/10.31223/X5FS6N
    [Google Scholar]
  82. Zerfass, H., Ramos, V.A., Ghiglione, M.C., Naipauer, M., Belotti, H.J. and Carmo, I.O . 2017. Folding, thrusting and development of push-up structures during the Miocene tectonic inversion of the Austral Basin, Southern Patagonian Andes (50°S). Tectonophysics, 699, 102–120, https://doi.org/10.1016/j.tecto.2017.01.010
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-132
Loading
/content/journals/10.1144/petgeo2020-132
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error