1887
Volume 27, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:
PDF

Abstract

A quantitative seismic interpretation study is presented for the Lower Cretaceous Tuxen reservoir in the Valdemar Field, which is associated with heterogeneous and complex geology. Our objective is to better outline the reservoir quality variations of the Tuxen reservoir across the Valdemar Field. Seismic pre-stack data and well logs from two appraisal wells form the basis of this study. The workflow used includes seismic and rock physics forward modelling, attribute analysis, a coloured inversion, and a Bayesian pre-stack inversion for litho-fluid classification. Based on log data, the rock physics properties of the Tuxen interval reveal that the seismic signal is more governed by porosity than water-saturation changes at near-offset (or small angle). The coloured and Bayesian inversion results were generally consistent with well-log observations at the reservoir level and conformed to interpreted horizons. Although the available data have some limitations and the geological setting is complex, the results implied more promising reservoir quality in some areas than others. Hence, the results may offer useful information for delineating the best reservoir zones for further field development and selecting appropriate production strategies.

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2021-016
2021-08-19
2021-12-04
Loading full text...

Full text loading...

/deliver/fulltext/pg/27/4/petgeo2021-016.html?itemId=/content/journals/10.1144/petgeo2021-016&mimeType=html&fmt=ahah

References

  1. Avseth, P., Mukerji, T. and Mavko, G.
    2005. Quantitative Seismic Interpretation: Applying Rock Physics to Reduce Interpretation Risk. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  2. Blouin, M. and Gloaguen, E
    . 2017. Colored inversion. The Leading Edge, 36, 858–861, https://doi.org/10.1190/tle36100858.1
    [Google Scholar]
  3. Bredesen, K., Lorentzen, M., Rasmussen, R., Nielsen, L. and Yuan, H.
    2020. Rock physics feasibility study of the Lower Cretaceous unit in the Valdemar Field, Danish North Sea. Paper 697 presented at the82nd EAGE Annual Conference & Exhibition, 8–11 December 2020, online meeting.
    [Google Scholar]
  4. Buland, A. and Omre, H
    . 2003. Bayesian linearized AVO inversion. Geophysics, 68, 185–198, https://doi.org/10.1190/1.1543206
    [Google Scholar]
  5. Buland, A., Kolbjørnsen, O. and Omre, H
    . 2003. Rapid spatially coupled AVO inversion in the Fourier domain. Geophysics, 68, 824–836, https://doi.org/10.1190/1.1581035
    [Google Scholar]
  6. Buland, A., Kolbjørnsen, O., Hauge, R., Skjæveland, Ø. and Duffaut, K
    . 2008. Bayesian lithology and fluid prediction from seismic prestack data. Geophysics, 73, C13–C21, https://doi.org/10.1190/1.2842150
    [Google Scholar]
  7. Calvert, A., Cunningham, A., Motlagh, M., Jensen, L., Fuzeau, T. and Ooi, K.
    2018. Insights from the first 4D seismic over Valdemar Lower Cretaceous chalk field. Paper WeA0 presented at the80th EAGE Annual Conference and Exhibition, 11–14 June 2018, Copenhagen, Denmark.
    [Google Scholar]
  8. Copestake, P. Sims, A., Crittenden, S., Hamar,G.P., Ineson, J.R., Rose,P.T. and Trinham
    M.E,. 2003. Lower Cretaceous. In: Evans, D., Graham, C., Armour, C. and  Bathurst, P. (eds) The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea. Geological Society, London, 191–211.
    [Google Scholar]
  9. de Figueiredo, L.P., Grana, D., Roisenberg, M. and Rodrigues, B.B
    . 2019. Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion. Geophysics, 84, M1–M13, https://doi.org/10.1190/geo2018-0839.1
    [Google Scholar]
  10. Dvorkin, J., Gutierrez, M.A. and Grana, D.
    2014. Seismic Reflections of Rock Properties. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  11. Fabricius, I.L., Olsen, C. and Prasad, M
    . 2005. Log interpretation of marly chalk, the Lower Cretaceous Valdemar Field, Danish North Sea: application of iso-frame and pseudo water film concepts. The Leading Edge, 24, 496–505, https://doi.org/10.1190/1.1926807
    [Google Scholar]
  12. Fabricius, I.L., Høier, C., Japsen, P. and Korsbech, U
    . 2007. Modelling elastic properties of impure chalk from South Arne Field, North Sea. Geophysical Prospecting, 55, 487–506, https://doi.org/10.1111/j.1365-2478.2007.00613.x
    [Google Scholar]
  13. Glad, A.C., Welch, M.J., Amour, F., Nick, H. and Clausen, O.R.
    2020. Natural fractures and sedimentology of a heterogeneous reservoir: The Valdemar Field, Danish North Sea. Paper presented at the82nd EAGE Annual Conference & Exhibition, 8–11 December 2020, online meeting.
    [Google Scholar]
  14. Gradstein, F., Ogg, J.G., Schmitz, M.D. and Ogg, G.M.
    (eds) 2012. The Geologic Time Scale. Elsevier, Amsterdam.
    [Google Scholar]
  15. Hansen, J.M. and Buch, A
    . 1982. Early Cretaceous. Danmarks Geologiske Undersøgelse Serie B, 8, 45–49, https://doi.org/10.34194/serieb.v8.7068
    [Google Scholar]
  16. Hansen, T.H., Clausen, O.R. and Andresen, K.J
    . 2021. Thick- and thin-skinned basin inversion in the Danish Central Graben, North Sea – the role of deep evaporites and basement kinematics. Solid Earth Discussions, 12, 1719–1747, https://doi.org/10.5194/se-12-1719-2021
    [Google Scholar]
  17. Ineson, J.
    1993. The Lower Cretaceous chalk play in the Danish Central Trough. Geological Society, London, Petroleum Geology Conference Series , 4, 175–183, https://doi.org/10.1144/0040175
    [Google Scholar]
  18. Jakobsen, F., Ineson, J.R., Kristensen, L. and Stemmerik, L
    . 2004. Characterization and zonation of a marly chalk reservoir: the Lower Cretaceous Valdemar Field of the Danish Central Graben. Petroleum Geoscience, 10, 21–33, https://doi.org/10.1144/1354-079303-584
    [Google Scholar]
  19. Jakobsen, F., Ineson, J., Kristensen, L., Nytoft, H.P. and Stemmerik, L.
    2005. The Valdemar Field, Danish Central Graben: field compartmentalization and regional prospectivity of the Lower Cretaceous chalk play. Geological Society, London, Petroleum Geology Conference Series , 6, 177–186, https://doi.org/10.1144/0060177
    [Google Scholar]
  20. Japsen, P., Britze, P. and Andersen, C
    . 2003. Upper Jurassic–Lower Cretaceous of the Danish Central Graben: structural framework and nomenclature. GEUS Bulletin, 1, 231–246, https://doi.org/10.34194/geusb.v1.4653
    [Google Scholar]
  21. Jensen, T.F., Holm, L., Frandsen, N., and Michelsen, O
    . 1986. Jurassic - Lower Cretaceous lithostratigraphic nomenclature for the Danish Central Trough. Danmarks Geologiske Undersøgelse Serie A, 12, 1–65, https://doi.org/10.34194/seriea.v12.7031
    [Google Scholar]
  22. Jensen, E.H., Johansen, T.A., Avseth, P. and Bredesen, K
    . 2016. Quantitative interpretation using inverse rock-physics modeling on AVO data. The Leading Edge, 35, 677–683, https://doi.org/10.1190/tle35080677.1
    [Google Scholar]
  23. Klinkby, L., Sparre Andersen, M. and Britze, P
    . 2002. Improved oil Recovery and Productivity From Lower Cretaceous Carbonates. 1.9. D: Seismic Mapping of the Cromer Knoll Group (Lower Cretaceous) in the Contiguous Area, Danish Central Graben. Geological Survey of Denmark and Greenland (GEUS) Report.
    [Google Scholar]
  24. Kolbjørnsen, O., Buland, A., Hauge, R., Røe, P., Jullum, M., Metcalfe, R.W. and Skjæveland, Ø
    . 2016. Bayesian AVO inversion to rock properties using a local neighborhood in a spatial prior model. The Leading Edge, 35, 431–436, https://doi.org/10.1190/tle35050431.1
    [Google Scholar]
  25. Kolbjørnsen, O., Buland, A., Hauge, R., Røe, P., Ndingwan, A.O. and Aker, E
    . 2020. Bayesian seismic inversion for stratigraphic horizon, lithology, and fluid prediction. Geophysics, 85, R207–R221, https://doi.org/10.1190/geo2019-0170.1
    [Google Scholar]
  26. Lancaster, S. and Whitcombe, D.
    2000. Fast-track ‘coloured’ inversion. SEG Technical Program Expanded Abstracts, 2000, January, 1572–1575, https://doi.org/10.1190/1.1815711
    [Google Scholar]
  27. Lieberkind, K., Bang, I., Mikkelsen, N. and Nygaard, E.
    1982. Late Cretaceous and Danian limestone. Danmarks Geologiske Undersøgelse Serie B, 8, 49–62, https://doi.org/10.34194/serieb.v8.7069
    [Google Scholar]
  28. Montazeri, M., Uldall, A., Moreau, J. and Nielsen, L
    . 2018. Pitfalls in velocity analysis for strongly contrasting, layered media – Example from the Chalk Group, North Sea. Journal of Applied Geophysics, 149, 52–62, https://doi.org/10.1016/j.jappgeo.2017.12.003
    [Google Scholar]
  29. Mukerji, T., Jørstad, A., Avseth, P., Mavko, G. and Granli, J
    . 2001. Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics. Geophysics, 66, 988–1001, https://doi.org/10.1190/1.1487078
    [Google Scholar]
  30. Naeini, E.Z., Gunning, J. and White, R
    . 2017. Well tie for broadband seismic data. Geophysical Prospecting, 65, 503–522, https://doi.org/10.1111/1365-2478.12433
    [Google Scholar]
  31. Ndingwan, A.O., Kolbjørnsen, O., Straith, K.R. and Bjerke, M.D.
    2018. Deciphering the seismic signature of the Edvard Grieg field, North Sea. SEG Technical Program Expanded Abstracts, 2018, August, 361–365, https://doi.org/10.1190/segam2018-2994746.1
    [Google Scholar]
  32. Partyka, G., Gridley, J. and Lopez, J
    . 1999. Interpretational applications of spectral decomposition in reservoir characterization. The Leading Edge, 18, 353–360, https://doi.org/10.1190/1.1438295
    [Google Scholar]
  33. Perez, G. and Marfurt, K.J
    . 2007. Improving lateral and vertical resolution of seismic images by correcting for wavelet stretch in common-angle migration. Geophysics, 72, C95–C104, https://doi.org/10.1190/1.2781619
    [Google Scholar]
  34. Rimstad, K. and Omre, H
    . 2010. Impact of rock-physics depth trends and Markov random fields on hierarchical Bayesian lithology/fluid prediction. Geophysics, 75, R93–R108, https://doi.org/10.1190/1.3463475
    [Google Scholar]
  35. Shuey, R.A
    . 1985. Simplification of the Zoeppritz equations. Geophysics, 50, 609–614, https://doi.org/10.1190/1.1441936
    [Google Scholar]
  36. Simm, R., Bacon, M. and Bacon, M.
    2014. Seismic Amplitude: An Interpreter's Handbook. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  37. Smit, F.W.H., Stemmerik, L., Lüthje, M. and van Buchem, F.S
    .P. 2021. Characterization and origin of large Campanian depressions within the Chalk Group of the Danish Central Graben – implications for hydrocarbon exploration and development. Geological Society, London, Special Publications , 509, https://doi.org/10.1144/SP509-2019-126
    [Google Scholar]
  38. van Buchem, F.S.P., Smit, F.W.H., Buijs, G.J.A., Trudgill, B. and Larsen, P.-H.
    2017. Tectonostratigraphic framework and depositional history of the Cretaceous–Danian succession of the Danish Central Graben (North Sea) – new light on a mature area. Geological Society, London, Petroleum Geology Conference Series , 8, 9–46, https://doi.org/10.1144/PGC8.24
    [Google Scholar]
  39. Vejbæk, O.V. and Andersen, C
    . 2002. Post mid-Cretaceous inversion tectonics in the Danish Central Graben – regionally synchronous tectonic events?Bulletin of the Geological Society of Denmark, 49, 139–144, https://doi.org/10.37570/bgsd-2003-49-11
    [Google Scholar]
  40. Vidalie, M., van Buchem, F., Schmidt, I. and Uldall, A.
    2014. Seismic stratigraphy of the Lower Cretaceous Valhall Formation (Danish Graben, North Sea). First Break, 32, 71–80, https://doi.org/10.3997/1365-2397.2014008
    [Google Scholar]
  41. Walden, A.T. and White, R.E
    . 1998. Seismic wavelet estimation: a frequency domain solution to a geophysical noisy input-output problem. IEEE Transactions on Geoscience and Remote Sensing, 36, 287–297, https://doi.org/10.1109/36.655337
    [Google Scholar]
  42. Walpole, L.J
    . 1966a. On bounds for the overall elastic moduli of inhomogeneous systems – I. Journal of the Mechanics and Physics of Solids, 14, 151–162, https://doi.org/10.1016/0022-5096(66)90035-4
    [Google Scholar]
  43. . 1966b. On bounds for the overall elastic moduli of inhomogeneous systems – II. Journal of the Mechanics and Physics of Solids, 14, 289–301, https://doi.org/10.1016/0022-5096(66)90025-1
    [Google Scholar]
  44. White, R
    . 1980. Partial coherence matching of synthetic seismograms with seismic traces. Geophysical Prospecting, 28, 333–358, https://doi.org/10.1111/j.1365-2478.1980.tb01230.x
    [Google Scholar]
  45. Wood, A.B.
    1955. A Textbook of Sound: Being an Account of the Physics of Vibrations with Special Reference to Recent Theoretical and Technical Developments. G. Bell & Sons, London.
    [Google Scholar]
  46. Zhang, R., Sen, M.K. and Srinivasan, S.A
    . 2013. A prestack basis pursuit seismic inversion. Geophysics, 78, R1–R11, https://doi.org/10.1190/2013-0610-TIOGEO.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2021-016
Loading
/content/journals/10.1144/petgeo2021-016
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error