1887
Volume 28, Issue 2
  • ISSN: 1354-0793
  • E-ISSN:
PDF

Abstract

Pore pressure prediction is a well-developed key discipline for well planning in the hydrocarbon industry, suggesting a similar importance for deep geothermal wells, especially, since drilling cost is often the largest investment in deep geothermal energy projects. To address the role of pore pressure prediction in deep geothermal energy, we investigated pore pressure-related drilling problems in the overpressured North Alpine Foreland Basin in SE Germany – one of Europe's most extensively explored deep geothermal energy plays. In the past, pore pressure was mainly predicted via maximum drilling mud weights of offset hydrocarbon wells, but recently more data became available, which led to a re-evaluation of the pore pressure distribution in this area. To compare the impact of pore pressure and its prediction, 70% of all deep geothermal wells drilled have been investigated for pore pressure-related drilling problems and two deep geothermal projects are given as more detailed examples. Thereby, pore pressure-related drilling problems were encountered in one third of all wells drilled, resulting in several side-tracks and an estimated drilling rate decrease of up to 40%, highlighting the importance of accurate pore pressure prediction to significantly reduce the cost of deep geothermal drilling in overpressured environments.

This article is part of the Geopressure collection available at: https://www.lyellcollection.org/cc/geopressure

[open-access]

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2021-060
2022-03-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/pg/28/2/petgeo2021-060.html?itemId=/content/journals/10.1144/petgeo2021-060&mimeType=html&fmt=ahah

References

  1. Agemar, T., Schellschmidt, R. and Schulz, R . 2012. Subsurface temperature distribution in Germany. Geothermics, 44, 65–77, https://doi.org/10.1016/j.geothermics.2012.07.002
    [Google Scholar]
  2. Agemar, T., Weber, J. and Schulz, R . 2014a. Deep geothermal energy production in Germany. Energies, 7, 4397–4416, https://doi.org/10.3390/en7074397
    [Google Scholar]
  3. Agemar, T., Alten, J., Ganz, B., Kuder, J., Kühne, K., Schumacher, S. and Schulz, R . 2014b. The Geothermal Information System for Germany - GeotIS. ZDGG, 165, 129–144, https://doi.org/10.1127/1860-1804/2014/0060
    [Google Scholar]
  4. Allen, P.A., Crampton, S.L. and Sinclair, H.D . 1991. The inception and early evolution of the north Alpine foreland basin, Switzerland. Basin Research, 3, 143–163, https://doi.org/10.1111/j.1365-2117.1991.tb00124.x
    [Google Scholar]
  5. Augustine, C., Tester, J.W., Anderson, B., Petty, S. and Livesay, B. 2006. A comparison of geothermal with oil and gas well drilling costs. Proceedings of the Thirty-First Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 15.
    [Google Scholar]
  6. Bachmann, G.H. and Müller, M . 1996. Die Entwicklung des süddeutschen Molassebeckens seit dem Variszikum: Eine Einführung. Zeitschrift für Geologische Wissenschaften, 24, 3–20.
    [Google Scholar]
  7. Bachmann, G.H., Koch, K., Müller, M. and Weggen, K . 1981. Ergebnisse und Erfahrungen bei der Exploration in den Bayerischen Alpen. Erdoel-Erdgas-Zeitschrift, 97, 127–133.
    [Google Scholar]
  8. Bachmann, G.H., Müller, M. and Weggen, K . 1987. Evolution of the Molasse Basin (Germany, Switzerland). Tectonophysics, 137, 77–92, https://doi.org/10.1016/0040-1951(87)90315-5
    [Google Scholar]
  9. Baran, R., Friedrich, A.M. and Schlunegger, F . 2014. The late Miocene to Holocene erosion pattern of the Alpine foreland basin reflects Eurasian slab unloading beneath the western Alps rather than global climate change. Lithosphere, 6, 124–131, https://doi.org/10.1130/L307.1
    [Google Scholar]
  10. Bay.LfU 2020. Umweltatlas. Bayerisches Landesamt für Umwelt.
    [Google Scholar]
  11. Birner, J. 2013. Hydrogeological Model of the Malm Aquifer in the South German Molasse Basin. PhD, Freie Universität Berlin.
    [Google Scholar]
  12. Böhm, F., Savvatis, A., Steiner, U., Schneider, M. and Koch, R . 2013. Lithofazielle Reservoircharakterisierung zur geothermischen Nutzung des Malm im Großraum München. Grundwasser – Zeitschrift der Fachsektion Hydrogeologie, 18, 3–13, https://doi.org/10.1007/s00767-012-0202-4
    [Google Scholar]
  13. Bohnsack, D., Potten, M., Pfrang, D., Wolpert, P. and Zosseder, K . 2020. Porosity–permeability relationship derived from Upper Jurassic carbonate rock cores to assess the regional hydraulic matrix properties of the Malm reservoir in the South German Molasse Basin. Geothermal Energy, 8, https://doi.org/10.1186/s40517-020-00166-9
    [Google Scholar]
  14. Budach, I., Moeck, I., Lüschen, E. and Wolfgramm, M . 2018. Temporal evolution of fault systems in the Upper Jurassic of the Central German Molasse Basin: case study Unterhaching. International Journal of Earth Sciences, 107, 635–653, https://doi.org/10.1007/s00531-017-1518-1
    [Google Scholar]
  15. BVG 2019. Tiefe Geothermie-Projekte in Deutschland 2019, https://www.geothermie.de/fileadmin/user_upload/Bibliothek/Downloads/Poster_TG-Projekte_in_Deutschland_2019.pdf[last accessed 17 June 2021].
  16. Drews, M. and Stollhofen, H. 2019. PPFG prediction in complex tectonic settings: the north Alpine Thrust Front and Foreland Basin, SE Germany. presented at theSecond EAGE Workshop on Pore Pressure Prediction, 19 May 2019, Amsterdam.
    [Google Scholar]
  17. Drews, M.C., Bauer, W., Caracciolo, L. and Stollhofen, H . 2018. Disequilibrium compaction overpressure in shales of the Bavarian Foreland Molasse Basin: results and geographical distribution from velocity-based analyses. Marine and Petroleum Geology, 92, 37–50, https://doi.org/10.1016/j.marpetgeo.2018.02.017
    [Google Scholar]
  18. Drews, M.C., Seithel, R., Savvatis, A., Kohl, T. and Stollhofen, H . 2019. A normal-faulting stress regime in the Bavarian Foreland Molasse Basin? New evidence from detailed analysis of leak-off and formation integrity tests in the greater Munich area, SE-Germany. Tectonophysics, 755, 1–9, https://doi.org/10.1016/j.tecto.2019.02.011
    [Google Scholar]
  19. Drews, M.C., Hofstettter, P., Zosseder, K., Shipilin, V. and Stollhofen, H . 2020. Predictability and mechanisms of overpressure in the Bavarian Foreland Molasse Basin: an integrated analysis of the Geretsried GEN-1 deep geothermal well. Geothermal Energy, 8, 20, https://doi.org/10.1186/s40517-020-00175-8
    [Google Scholar]
  20. EU-Commission 2018. SET Plan Delivering Results: The Implementation Plans, European Union , 56.
    [Google Scholar]
  21. Fisch, H., Uhde, J., Bems, C., Lang, P. and Bartels, J. 2015. Hydraulic testing and reservoir characterization of the Taufkirchen site in the Bavarian Molasse Basin, Germany. World Geothermal Congress, 19–25 April 2015, Melbourne, Australia, 1–14.
    [Google Scholar]
  22. Fjaer, E., Holt, R.M., Horsrud, P., Raaen, A.M. and Risnes, R. 2008. Petroleum Related Rock Mechanics, 2nd edn. Elsevier.
    [Google Scholar]
  23. Flechtner, F. and Aubele, K. 2019. A brief stock take of the deep geothermal projects in Bavaria, Germany (2018). Paper SGP-TR-214, presented at thePROCEEDINGS, 44th Workshop on Geothermal Reservoir Engineering, 11–13 February 2019, Stanford University, Stanford, California.
    [Google Scholar]
  24. Gier, S., Ottner, F. and Johns, W.D . 1998. Layer-charge heterogeneity in smectites of I-S phases in pelitic sediments from the Molasse Basin, Austria. Clays and Clay Minerals, 46, 670–678, https://doi.org/10.1346/CCMN.1998.0460607
    [Google Scholar]
  25. IRENA 2017. Geothermal Power - Technology Brief. International Renewable Energy Agency (IRENA).
    [Google Scholar]
  26. IRENA 2021. World Energy Transitions Outlook. International Renewable Energy Agency (IRENA).
    [Google Scholar]
  27. Kuhlemann, J. and Kempf, O . 2002. Post-Eocene evolution of the North Alpine Foreland Basin and its response to Alpine tectonics. Sedimentary Geology, 152, 45–78, https://doi.org/10.1016/S0037-0738(01)00285-8
    [Google Scholar]
  28. Lackner, D., Lentsch, D. and Dorsch, K . 2018. Germany`s deepest hydro-geothermal doublet, drilling challenges and conclusions for the design of future wells. Transactions - Geothermal Resources Council, 349–359.
    [Google Scholar]
  29. Lemcke, K . 1976. Übertiefe Grundwässer im süddeutschen Alpenvorland. Bulletin der Vereinigung Schweiz. Petroleum-Geologen und -Ingenieure, 42, 9–18.
    [Google Scholar]
  30. Lemcke, K . 1979. Dreissig Jahre Oel- und Gassuche im süddeutschen Alpenvorland. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 61, 305–317, https://doi.org/10.1127/jmogv/61/1979/305
    [Google Scholar]
  31. Lüschen, E., Borrini, D., Gebrande, H., Lammerer, B., Millahn, K., Neubauer, F. and Nicolich, R . 2006. TRANSALP - deep crustal Vibroseis and explosive seismic profiling in the Eastern Alps. Tectonophysics, 414, 9–38, https://doi.org/10.1016/j.tecto.2005.10.014
    [Google Scholar]
  32. Mouchet, J.-P. and Mitchell, A. 1989. Abnormal Pressures while Drilling: Origins, Predictions, Detection Evaluation. Editions Technip, Paris, France.
    [Google Scholar]
  33. Müller, M., Nieberding, F. and Wanninger, A . 1988. Tectonic style and pressure distribution at the northern margin of the Alps between Lake Constance and the River Inn. Geologische Rundschau, 77, 787–796, https://doi.org/10.1007/BF01830185
    [Google Scholar]
  34. NIBIS®Kartenserver 2019. Geophysik und Tiefbohrungen. Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover.
    [Google Scholar]
  35. Pasternak, M . 2011. Exploration and Production of Crude Oil and Natural Gas in Germany in 2010. Erdöl Erdgas Kohle, 127, 272–286.
    [Google Scholar]
  36. Pfiffner, O.A. 1986. Evolution of the north Alpine foreland basin in the Central Alps. In: Allen, P.A. and Homewood, P. Foreland Basins, Blackwell Scientific Publications, Oxford, UK, 219–228.
    [Google Scholar]
  37. Pinkston, F.W.M. and Flemings, P.B . 2019. Overpressure at the Macondo Well and its impact on the Deepwater Horizon blowout. Scientific Reports, 9, https://doi.org/10.1038/s41598-019-42496-0
    [Google Scholar]
  38. Pletl, C., Angerer, J., Graf, R., Stoyke, R. and Toll, H . 2010. Bohrerfahrungen bei Deutschlands größtem Geothermieprojekt. bbr - Leitungsbau, Brunnenbau, Geothermie, 3, 38–47.
    [Google Scholar]
  39. Przybycin, A.M., Scheck-Wenderoth, M. and Schneider, M . 2017. The origin of deep geothermal anomalies in the German Molasse Basin: results from 3D numerical models of coupled fluid flow and heat transport. Geothermal Energy, 5, https://doi.org/10.1186/s40517-016-0059-3
    [Google Scholar]
  40. Reinecker, J., Tingay, M., Müller, B. and Heidbach, O . 2010. Present-day stress orientation in the Molasse Basin. Tectonophysics, 482, 129–138, https://doi.org/10.1016/j.tecto.2009.07.021
    [Google Scholar]
  41. Sachsenhofer, R.F., Leitner, B. et al. 2010. Deposition, erosion and hydrocarbon source potential of the Oligocene Eggerding Formation (Molasse Basin, Austria). Austrian Journal of Earth Sciences, 103, 76–99.
    [Google Scholar]
  42. Schmid, S.M., Fügenschuh, B., Kissling, E. and Schuster, R . 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae, 97, 93–117, https://doi.org/10.1007/s00015-004-1113-x
    [Google Scholar]
  43. Schulz, I., Steiner, U. and Schubert, A . 2017. Factors for the success of deep geothermal projects – experience from the Bavarian Molasse Basin. Erdöl Erdgas Kohle, 133, 73–79.
    [Google Scholar]
  44. Sissingh, W . 1997. Tectonostratigraphy of the North Alpine Foreland Basin: correlation of Tertiary depositional cycles and orogenic phases. Tectonophysics, 282, 223–256, https://doi.org/10.1016/S0040-1951(97)00221-7
    [Google Scholar]
  45. Stefansson, V . 2002. Investment cost for geothermal power plants. Geothermics, 31, 263–272, https://doi.org/10.1016/S0375-6505(01)00018-9
    [Google Scholar]
  46. Stober, I. and Bucher, K. 2013. Geothermal Energy: From Theoretical Models to Exploration and Development. Springer-Verlag, Berlin, https://doi.org/10.1007/978-3-642-13352-7
    [Google Scholar]
  47. Zweigel, J . 1998. Eustatic versus tectonic control on foreland basin fill: sequence stratigraphy, subsidence analysis, stratigraphic modelling, and reservoir modelling applied to the German Molasse basin. Contributions to Sedimentary Geology, 20, X-140.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2021-060
Loading
/content/journals/10.1144/petgeo2021-060
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error