1887
Volume 30, Issue 1
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Former coal mines hosted in Upper Carboniferous silt- and sandstones in the Ruhr Basin, NW Germany, are currently examined for post-mining applications (e.g. geothermal energy) and are also important tight-gas reservoir analogs. Core material from well Pelkum-1, comprising Westphalian A (Bashkirian) delta deposits, was studied. The sandstones and siltstones are generally tight (mean porosity 5.5%; mean permeability 0.26 mD). Poor reservoir properties primarily result from pronounced mechanical compaction (mean COPL 38.8%) due to deep burial and high contents of ductile rock fragments. Better reservoir properties in sandstones (>8%; >0.01 mD) are due to (1) lower volumes of ductile grains (<38%) that deform during mechanical compaction and (2) higher volumes in feldspar and unstable rock fragments. During burial these form secondary porosity (>1.5%) resulting from acidic pore water from organic matter maturation. Still, sandstones with enhanced porosities only show a small increase in permeability since authigenic clays (i.e. kaolinite and illite) or late diagenetic carbonates (i.e. siderite and ferroan dolomite/ankerite) clog secondary porosity. Quartz cementation has a minor impact on reservoir properties. Evaluating the Si/Al ratio can be a suitable proxy to assess grain sizes and may be a convenient tool for further exploration.

Lithologs and petrophysical data of well Pelkum-1 are available at https://doi.org/10.6084/m9.figshare.c.7003156

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2023-020
2024-01-25
2024-04-27
Loading full text...

Full text loading...

References

  1. Abouessa, A. and Morad, S. 2009. An integrated study of diagenesis and depositional facies in tidal sandstones: Hawaz Formation (Middle Ordovician), Murzuq Basin, Libya. Journal of Petroleum Geology, 32, 39–65, https://doi.org/10.1111/j.1747-5457.2009.00434.x
    [Google Scholar]
  2. Arfai, J., Jähne, F., Lutz, R., Franke, D., Gaedicke, C. and Kley, J. 2014. Late Palaeozoic to Early Cenozoic geological evolution of the northwestern German North Sea (Entenschnabel): new results and insights. Netherlands Journal of Geosciences – Geologie En Mijnbouw, 93, 147–174, https://doi.org/10.1017/njg.2014.22
    [Google Scholar]
  3. Barth, T. and Bjørlykke, K. 1993. Organic acids from source rock maturation: generation potentials, transport mechanisms and relevance for mineral diagenesis. Applied Geochemistry, 8, 325–337, https://doi.org/10.1016/0883-2927(93)90002-X
    [Google Scholar]
  4. Beard, D. and Weyl, P. 1973. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin, 57, 349–369, https://doi.org/10.1306/819A4272-16C5-11D7-8645000102C1865D
    [Google Scholar]
  5. Becker, S., Hilgers, C., Kukla, P.A. and Urai, J.L. 2011. Crack-seal microstructure evolution in bi-mineralic quartz–chlorite veins in shales and siltstones from the RWTH-1 well, Aachen, Germany. Journal of Structural Geology, 33, 676–689, https://doi.org/10.1016/j.jsg.2011.01.001
    [Google Scholar]
  6. Becker, I., Wüstefeld, P., Koehrer, B., Felder, M. and Hilgers, C. 2017. Porosity and permeability variations in a tight gas sandstone reservoir analogue, Westphalian D, Lower Saxony Basin, NW Germany: influence of depositional setting and diagenesis. Journal of Petroleum Geology, 40, 363–389, https://doi.org/10.1111/jpg.12685
    [Google Scholar]
  7. Becker, I., Busch, B., Koehrer, B., Adelmann, D. and Hilgers, C. 2019. Reservoir quality evolution of Upper Carboniferous (Westphalian) tight gas sandstones, Lower Saxony Basin, NW Germany. Journal of Petroleum Geology, 42, 371–392, https://doi.org/10.1111/jpg.12742
    [Google Scholar]
  8. Berger, G., Lacharpagne, J.-C., Velde, B., Beaufort, D. and Lanson, B. 1997. Kinetic constraints on illitization reactions and the effects of organic diagenesis in sandstone/shale sequences. Applied Geochemistry, 12, 23–35, https://doi.org/10.1016/S0883-2927(96)00051-0
    [Google Scholar]
  9. Bisutti, I., Hilke, I., Schumacher, J. and Raessler, M.2007. A novel single-run dual temperature combustion (SRDTC) method for the determination of organic, in-organic and total carbon in soil samples. Talanta, 71, 521–528, https://doi.org/10.1016/j.talanta.2006.04.022
    [Google Scholar]
  10. Bjorkum, P.A. and Gjelsvik, N. 1988. An isochemical model for formation of authigenic kaolinite, K-feldspar and illite in sediments. Journal of Sedimentary Research, 58, 506–511, https://doi.org/10.1306/212F8DD2-2B24-11D7-8648000102C1865D
    [Google Scholar]
  11. Bjørlykke, K. and Egeberg, P. 1993. Quartz cementation in sedimentary basins. AAPG Bulletin, 77, 1538–1548, https://doi.org/10.1306/BDFF8EE8-1718-11D7-8645000102C1865D
    [Google Scholar]
  12. Bjørlykke, K., ElvekhØI, B.A. and Malm, A. 1979. Diagenesis in Mesozoic sandstones from Spitsbergen and the North Sea–a comparison. Geologische Rundschau, 68, 1152–1171, https://doi.org/10.1007/BF02274692
    [Google Scholar]
  13. Brenne, S.2016. Hydraulic fracturing and flow experiments on anisotropic and pre-fractured rocks.
  14. Brix, M., Drozdzewski, G., Greiling, R., Wolf, R. and Wrede, V. 1988. The N Variscan margin of the Ruhr coal district (Western Germany): structural style of a buried thrust front?Geologische Rundschau, 77, 115–126, https://doi.org/10.1007/BF01848679
    [Google Scholar]
  15. Bruns, B., Di Primio, R., Berner, U. and Littke, R. 2013. Petroleum system evolution in the inverted Lower Saxony Basin, northwest Germany: a 3D basin modeling study. Geofluids, 13, 246–271, https://doi.org/10.1111/gfl.12016
    [Google Scholar]
  16. Busch, B., Hilgers, C., Gronen, L. and Adelmann, D. 2017. Cementation and structural diagenesis of fluvio-aeolian Rotliegend sandstones, northern England. Journal of the Geological Society, 174, 855–868, https://doi.org/10.1144/jgs2016-122
    [Google Scholar]
  17. Busch, B., Becker, I., Koehrer, B., Adelmann, D. and Hilgers, C. 2019. Porosity evolution of two Upper Carboniferous tight-gas-fluvial sandstone reservoirs: impact of fractures and total cement volumes on reservoir quality. Marine and Petroleum Geology, 100, 376–390, https://doi.org/10.1016/j.marpetgeo.2018.10.051
    [Google Scholar]
  18. Busch, B., Hilgers, C. and Adelmann, D. 2020. Reservoir quality controls on Rotliegend fluvio-aeolian wells in Germany and the Netherlands, Southern Permian Basin–Impact of grain coatings and cements. Marine and Petroleum Geology, 112, 104075, https://doi.org/10.1016/j.marpetgeo.2019.104075
    [Google Scholar]
  19. Busch, B., Spitzner, A.-D., Adelmann, D. and Hilgers, C. 2022. The significance of outcrop analog data for reservoir quality assessment: a comparative case study of Lower Triassic Buntsandstein sandstones in the Upper Rhine Graben. Marine and Petroleum Geology, 141, 105701, https://doi.org/10.1016/j.marpetgeo.2022.105701
    [Google Scholar]
  20. Casshyap, S.M. 1975. Cyclic characteristics of coal-bearing sediments in the Bochumer Formation (Westphal A 2) Ruhrgebiet, Germany. Sedimentology, 22, 237–255, https://doi.org/10.1111/j.1365-3091.1975.tb00292.x
    [Google Scholar]
  21. Coleman, M. 1985. Geochemistry of diagenetic non-silicate minerals: kinetic considerations. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 315, 39–56, https://doi.org/10.1098/rsta.1985.0028
    [Google Scholar]
  22. Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J.T. and Westfall, L.2016. International energy outlook 2016 with projections to 2040. Retrieved from.
  23. Cruz, M.R. and Reyes, E. 1998. Kaolinite and dickite formation during shale diagenesis: isotopic data. Applied Geochemistry, 13, 95–104, https://doi.org/10.1016/S0883-2927(97)00056-5
    [Google Scholar]
  24. Curtis, C. and Coleman, M.1986. Controls on the precipitation of early diagenetic calcite, dolomite and siderite concretions in complex depositional sequences, https://doi.org/10.2110/pec.86.38.0023
  25. Curtis, C. and Spears, D. 1968. The formation of sedimentary iron minerals. Economic Geology, 63, 257–270, https://doi.org/10.2113/gsecongeo.63.3.257
    [Google Scholar]
  26. Dawson, G., Golding, S., Esterle, J. and Massarotto, P. 2012. Occurrence of minerals within fractures and matrix of selected Bowen and Ruhr Basin coals. International Journal of Coal Geology, 94, 150–166, https://doi.org/10.1016/j.coal.2012.01.004
    [Google Scholar]
  27. Dickson, J. 1965. A modified staining technique for carbonates in thin section. Nature, 205, 587–587, https://doi.org/10.1038/205587a0
    [Google Scholar]
  28. Dowey, P.J., Worden, R.H., Utley, J. and Hodgson, D.M. 2017. Sedimentary controls on modern sand grain coat formation. Sedimentary Geology, 353, 46–63, https://doi.org/10.1016/j.sedgeo.2017.03.001
    [Google Scholar]
  29. Drozdzewski, G. 1988. Die wurzel der Osning-überschiebung und der mechanismus herzynischer inversionsstörungen in Mitteleuropa. Geologische Rundschau, 77, 127–141, https://doi.org/10.1007/BF01848680
    [Google Scholar]
  30. Drozdzewski, G. 1992. Zur Faziesentwicklung im Oberkarbon des Ruhrbeckens, abgeleitet aus Mächtigkeitskarten und lithostratigraphischen Gesamtprofilen. Zeitschrift für angewandte Geologie, 38, 41–48.
    [Google Scholar]
  31. Drozdzewski, G. 1993. The Ruhr coal basin (Germany): structural evolution of an autochthonous foreland basin. International Journal of Coal Geology, 23, 231–250, https://doi.org/10.1016/0166-5162(93)90050-K
    [Google Scholar]
  32. Drozdzewski, G.2005. Zur sedimentaren Entwicklung des Subvariscikums im Namurium und Westfalium Nordwestdeutschlands. In: Volker, W. (ed.) Stratigraphie von Deutschland V – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier Forschungsinstitut Senckenberg, Frankfurt am Main, 254, 271–320.
    [Google Scholar]
  33. Drozdzewski, G. and Wrede, V.1994. Faltung und Bruchtektonik–Analyse der Tektonik im Subvariscikum. In: Hilden, H.D. (ed.) Das Subvariscikum Nordwestdeutschlands – Struktur und Lagerstättenpotential eines Vorlandbeckens. Geologisches Landesamt Nordrhein-Westfalen, Krefeld, 38, 7–187.
    [Google Scholar]
  34. Duda, M. and Renner, J. 2013. The weakening effect of water on the brittle failure strength of sandstone. Geophysical Journal International, 192, 1091–1108, https://doi.org/10.1093/gji/ggs090
    [Google Scholar]
  35. Fiebig, H.1971. Untersuchungsergebnisse zur Bohrung Pelkum 1 – 1971. Bearbeitung Karbon Nachtrag zur Schichtenbeschreibung der Tiefbohrung Pelkum 1. Bergbau AG Westfalen. Bochum.
  36. Folk, R.L.1980. Petrology of Sedimentary Rocks. Hemphill Publishing Company.
    [Google Scholar]
  37. Folk, R.L. and Ward, W.C. 1957. Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, 27, 3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
    [Google Scholar]
  38. Gaupp, R., Matter, A., Platt, J., Ramseyer, K. and Walzebuck, J. 1993. Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, northwest Germany. AAPG Bulletin, 77, 1111–1128, https://doi.org/10.1306/BDFF8E0C-1718-11D7-8645000102C1865D
    [Google Scholar]
  39. Gautier, D.L. 1982. Siderite concretions; indicators of early diagenesis in the Gammon Shale (Cretaceous). Journal of Sedimentary Research, 52, 859–871, https://doi.org/10.1306/212F8076-2B24-11D7-8648000102C1865D
    [Google Scholar]
  40. Gayer, R., Cole, J., Greiling, R., Hecht, C. and Jones, J.1993. Comparative evolution of coal-bearing foreland basins along the Variscan northern margin in Europe. In: Gayer, R.A., Greiling, R.O. and Vogel, A.K. (eds) Rhenohercynian and Subvariscan Fold Belts. Vieweg and Sons, Braunschweig, 47–82.
    [Google Scholar]
  41. Geluk, M. 1999. Late Permian (Zechstein) rifting in the Netherlands; models and implications for petroleum geology. Petroleum Geoscience, 5, 189–199, https://doi.org/10.1144/petgeo.5.2.189
    [Google Scholar]
  42. Götze, J., Schertl, H.-P., Neuser, R.D., Kempe, U. and Hanchar, J.M. 2013. Optical microscope-cathodoluminescence (OM–CL) imaging as a powerful tool to reveal internal textures of minerals. Mineralogy and Petrology, 107, 373–392, https://doi.org/10.1007/s00710-012-0256-0
    [Google Scholar]
  43. Greve, J., Busch, B., Quandt, D., Knaak, M., Hartkopf-Fröder, C. and Hilgers, C. 2023. Coupling heat conductivity and lithofacies of the coal-bearing Upper Carboniferous in the eastern Ruhr Basin, NW Germany. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 4, 673–695, https://doi.org/10.1127/zdgg/2023/0350
    [Google Scholar]
  44. Guion, P. 1987. Palaeochannels in mine workings in the High Hazles Coal (Westphalian B), Nottinghamshire Coalfield, England. Journal of the Geological Society, 144, 471–488, https://doi.org/10.1144/gsjgs.144.3.0471
    [Google Scholar]
  45. Guion, P. and Fielding, C.1988. Westphalian A and B sedimentation in the Pennine Basin, UK. In: Besly, B.M. and Kelling, G. (eds) Sedimentation in a synorogenic basin complex. The Upper Carboniferous of Northwest Europe. Blackie, Glasgow, 153–177.
    [Google Scholar]
  46. Hancock, N. and Taylor, A. 1978. Clay mineral diagenesis and oil migration in the Middle Jurassic Brent Sand Formation. Journal of the Geological Society, 135, 69–72, https://doi.org/10.1144/gsjgs.135.1.0069
    [Google Scholar]
  47. Hedemann, H.1985. Das Nordwestdeutsche Oberkarbonbecken, sein Erdgas und seine Kohlerflöze. Paper presented at the Dixième Congrès International de Stratigraphie et de Géologie du Carbonifère, 12–17 September 1983, Madrid. Compte Rendu, Vol.2.
    [Google Scholar]
  48. Higgs, K.E., Zwingmann, H., Reyes, A.G. and Funnell, R.H. 2007. Diagenesis, porosity evolution, and petroleum emplacement in tight gas reservoirs, Taranaki Basin, New Zealand. Journal of Sedimentary Research, 77, 1003–1025, https://doi.org/10.2110/jsr.2007.095
    [Google Scholar]
  49. Hofmann, P., Ricken, W., Schwark, L. and Leythaeuser, D. 2001. Geochemical signature and related climatic-oceanographic processes for early Albian black shales: Site 417D, North Atlantic Ocean. Cretaceous Research, 22, 243–257, https://doi.org/10.1006/cres.2001.0253
    [Google Scholar]
  50. Jackson, M. and Sherman, G.D. 1953. Chemical weathering of minerals in soils. Advances in Agronomy, 5, 219–318, https://doi.org/10.1016/S0065-2113(08)60231-X
    [Google Scholar]
  51. Jasper, K., Krooss, B.M., Flajs, G., Hartkopf-Fröder, C. and Littke, R. 2009. Characteristics of type III kerogen in coal-bearing strata from the Pennsylvanian (Upper Carboniferous) in the Ruhr Basin, Western Germany: comparison of coals, dispersed organic matter, kerogen concentrates and coal–mineral mixtures. International Journal of Coal Geology, 80, 1–19, https://doi.org/10.1016/j.coal.2009.07.003
    [Google Scholar]
  52. Kley, J. and Voigt, T. 2008. Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology, 36, 839–842, https://doi.org/10.1130/G24930A.1
    [Google Scholar]
  53. Kombrink, H., Van Lochem, H. and Van Der Zwan, K.J. 2010. Seismic interpretation of Dinantian carbonate platforms in the Netherlands; implications for the palaeogeographical and structural development of the Northwest European Carboniferous Basin. Journal of the Geological Society, 167, 99–108, https://doi.org/10.1144/0016-76492008-149
    [Google Scholar]
  54. Lander, R.H., Larese, R.E. and Bonnell, L.M. 2008. Toward more accurate quartz cement models: the importance of euhedral versus noneuhedral growth rates. AAPG Bulletin, 92, 1537–1563, https://doi.org/10.1306/07160808037
    [Google Scholar]
  55. Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabere, A. and Meunier, A. 2002. Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Minerals, 37, 1–22, https://doi.org/10.1180/0009855023710014
    [Google Scholar]
  56. Littke, R., Krooss, B., Uffmann, A., Schulz, H.-M. and Horsfield, B. 2011. Unconventional gas resources in the Paleozoic of Central Europe. Oil & Gas Science and Technology–Revue d'IFP Energies Nouvelles, 66, 953–977, https://doi.org/10.2516/ogst/2010033
    [Google Scholar]
  57. Lønøy, A., Akselsen, J. and Rønning, K. 1986. Diagenesis of a deeply buried sandstone reservoir: Hild Field, Northern North Sea. Clay Minerals, 21, 497–511, https://doi.org/10.1180/claymin.1986.021.4.06
    [Google Scholar]
  58. Lundegard, P.D. 1992. Sandstone porosity loss; a ‘big picture’ view of the importance of compaction. Journal of Sedimentary Research, 62, 250–260, https://doi.org/10.1306/D42678D4-2B26-11D7-8648000102C1865D
    [Google Scholar]
  59. McBride, E.F. 1963. A classification of common sandstones. Journal of Sedimentary Research, 33, 664–669, https://doi.org/10.1306/74D70EE8-2B21-11D7-8648000102C1865D
    [Google Scholar]
  60. McKinley, J., Worden, R. and Ruffell, A. 1999. Smectite in sandstones: a review of the controls on occurrence and behaviour during diagenesis. In: Worden, R.H. and Morad, S. (eds) Clay mineral cements in sandstones, Blackwell, Oxford, Vol. 34, 109–128, https://doi.org/10.1002/9781444304336.ch5
    [Google Scholar]
  61. Meisl, S., HJ, A. and Strecker, G.1982. Niedrigtemperierte Metamorphose im Taunus und im Soonwald.
  62. Miocic, J.M., Girard, J.-P., Schoener, R. and Gaupp, R. 2020. Mudstone/sandstone ratio control on carbonate cementation and reservoir quality in Upper Permian Rotliegend sandstones, offshore the Netherlands. Marine and Petroleum Geology, 115, 104293, https://doi.org/10.1016/j.marpetgeo.2020.104293
    [Google Scholar]
  63. Molenaar, N. 1986. The interrelation between clay infiltration, quartz cementation, and compaction in Lower Givetian terrestrial sandstones, northern Ardennes, Belgium. Journal of Sedimentary Research, 56, 359–369, https://doi.org/10.1306/212F8913-2B24-11D7-8648000102C1865D
    [Google Scholar]
  64. Monsees, A.C., Busch, B., Schöner, N. and Hilgers, C. 2020. Rock typing of diagenetically induced heterogeneities–a case study from a deeply-buried clastic Rotliegend reservoir of the Northern German Basin. Marine and Petroleum Geology, 113, 104163, https://doi.org/10.1016/j.marpetgeo.2019.104163
    [Google Scholar]
  65. Morad, S., Ketzer, J. and De Ros, L.F. 2000. Spatial and temporal distribution of diagenetic alterations in siliciclastic rocks: implications for mass transfer in sedimentary basins. Sedimentology, 47, 95–120, https://doi.org/10.1046/j.1365-3091.2000.00007.x
    [Google Scholar]
  66. Mumm, A.S. and Wolfgramm, M. 2002. Diagenesis and fluid mobilisation during the evolution of the North German Basin–evidence from fluid inclusion and sulphur isotope analysis. Marine and Petroleum Geology, 19, 229–246, https://doi.org/10.1016/S0264-8172(02)00015-6
    [Google Scholar]
  67. Pasternak, M., Kosinowski, M., Loesch, J., Meyer, H., Porth, H. and Sedlacek, R.1998. Crude oil and natural gas in the Federal Republic of Germany 1997; Erdoel und Erdgas in der Bundesrepublik Deutschland 1997.
  68. Paxton, S., Szabo, J., Ajdukiewicz, J. and Klimentidis, R. 2002. Construction of an intergranular volume compaction curve for evaluating and predicting compaction and porosity loss in rigid-grain sandstone reservoirs. AAPG Bulletin, 86, 2047–2067, https://doi.org/10.1306/61EEDDFA-173E-11D7-8645000102C1865D
    [Google Scholar]
  69. Pittman, E.D. and Larese, R.E. 1991. Compaction of lithic sands: experimental results and applications. AAPG Bulletin, 75, 1279–1299, https://doi.org/10.1306/0C9B292F-1710-11D7-8645000102C1865D
    [Google Scholar]
  70. Prajapati, N., Abad Gonzalez, A., Selzer, M., Nestler, B., Busch, B. and Hilgers, C. 2020. Quartz cementation in polycrystalline sandstone: insights from phase-field simulations. Journal of Geophysical Research: Solid Earth, 125, e2019JB019137, https://doi.org/10.1029/2019JB019137
    [Google Scholar]
  71. Pye, K., Dickson, J., Schiavon, N., Coleman, M. and Cox, M. 1990. Formation of siderite-Mg-calcite-iron sulphide concretions in intertidal marsh and sandflat sediments, north Norfolk, England. Sedimentology, 37, 325–343, https://doi.org/10.1111/j.1365-3091.1990.tb00962.x
    [Google Scholar]
  72. Quandt, D., Busch, B., Fuchs, H., Alvarado de la Barrera, A., Greve, J. and Hilgers, C.2022. Petrographical and petrophysical properties of tight siliciclastic rocks from the Ibbenbueren coal mine with regard to mine flooding. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 173, 653–672, https://doi.org/10.1127/zdgg/2022/0343
    [Google Scholar]
  73. Rieken, R.1988. Lösungs-Zusammensetzung und Migrationsprozesse von Paläo-Fluidsystemen in Sedimentgesteinen des Norddeutschen Beckens:(Mikrothermometrie, Laser-Raman-Spektroskopie und Isotopen-Geochemie): Im Selbstverlag der Geologischen Institute der Georg-August-Universität ….
  74. Rygel, M.C., Fielding, C.R., Frank, T.D. and Birgenheier, L.P. 2008. The magnitude of Late Paleozoic glacioeustatic fluctuations: a synthesis. Journal of Sedimentary Research, 78, 500–511, https://doi.org/10.2110/jsr.2008.058
    [Google Scholar]
  75. Sindern, S., Meyer, F., Lögering, M., Kolb, J., Vennemann, T. and Schwarzbauer, J. 2012. Fluid evolution at the Variscan front in the vicinity of the Aachen thrust. International Journal of Earth Sciences, 101, 87–108, https://doi.org/10.1007/s00531-011-0662-2
    [Google Scholar]
  76. Stöckhert, F., Molenda, M., Brenne, S. and Alber, M. 2015. Fracture propagation in sandstone and slate–Laboratory experiments, acoustic emissions and fracture mechanics. Journal of Rock Mechanics and Geotechnical Engineering, 7, 237–249, https://doi.org/10.1016/j.jrmge.2015.03.011
    [Google Scholar]
  77. Strehlau, K. 1990. Facies and genesis of Carboniferous coal seams of Northwest Germany. International Journal of Coal Geology, 15, 245–292, https://doi.org/10.1016/0166-5162(90)90068-A
    [Google Scholar]
  78. Süss, M., Drozdzewski, G. and Schäfer, A. 2000. Sequenzstratigraphie des kohleführenden Oberkarbons im Ruhr-Becken. Geologisches Jahrbuch A, 156, 45–106.
    [Google Scholar]
  79. Süss, M. P., Drozdzewski, G. and Schäfer, A. 2007. Sedimentary environment dynamics and the formation of coal in the Pennsylvanian Variscan foreland in the Ruhr Basin (Germany, Western Europe). International Journal of Coal Geology, 69, 267–287, https://doi.org/10.1016/j.coal.2006.05.003
    [Google Scholar]
  80. Teichmüller, M. and Teichmüller, R.1982. The geological basis of coal formation. In: Stach, E., Mackowsky, M.T., Teichmüller, M., Taylor, G.H., Chandra, D. and Teichmüller, R. (eds) Stach's Textbook of Coal Petrology, 3rd edn. Gebrüder Borntraeger, Berlin, Stuttgart, 5–86.
    [Google Scholar]
  81. Thielemann, T., Cramer, B. and Schippers, A. 2004. Coalbed methane in the Ruhr Basin, Germany: a renewable energy resource?Organic Geochemistry, 35, 1537–1549, https://doi.org/10.1016/j.orggeochem.2004.05.004
    [Google Scholar]
  82. Tucker, M.E.2001. Sedimentary Petrology: an Introduction to the Origin of Sedimentary Rocks. John Wiley & Sons.
    [Google Scholar]
  83. Udden, J.A. 1914. Mechanical composition of clastic sediments. Bulletin of the Geological Society of America, 25, 655–744, https://doi.org/10.1130/GSAB-25-655
    [Google Scholar]
  84. Vinken, R.1988. The Northwest European Tertiary Basin. Bundesanstalt für Geowissenschaften und Rohstoffe und den Geologischen Landesämtern in der Bundesrepublik Deutschland.
    [Google Scholar]
  85. Walderhaug, O. 1996. Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs. AAPG Bulletin, 80, 731–745, https://doi.org/10.1306/64ED88A4-1724-11D7-8645000102C1865D
    [Google Scholar]
  86. Wentworth, C.K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377–392, https://doi.org/10.1086/622910
    [Google Scholar]
  87. Wimmers, K. and Koehrer, B. 2014. Integration of sedimentology, petrophysics and rock typing as key to understanding a tight gas reservoir. Oil Gas European Magazine, 40, 196–200.
    [Google Scholar]
  88. Wolf, R. 1985. Tiefentektonik des linksniederrheinischen Steinkohlengebietes. Beiträge zur Tiefentektonik westdeutsche Steinkohlenlagerstätten, 105–167.
    [Google Scholar]
  89. Worden, R.H. and Burley, S. 2003. Sandstone diagenesis: the evolution of sand to stone. Sandstone Diagenesis: Recent and Ancient, 4, 3–44, https://doi.org/10.1002/9781444304459.ch
    [Google Scholar]
  90. Worden, R.H. and Morad, S. 1999. Clay minerals in sandstones: controls on formation, distribution and evolution. In: Worden, R.H. and Morad, S. (eds) Clay Mineral Cements in Sandstones, 34, 1–41, https://doi.org/10.1002/9781444304336.ch1
    [Google Scholar]
  91. Wrede, V. and Ribbert, K.2005. Das Oberkarbon (Silesium) am Nordrand des rechtsrheinischen Schiefergebirges (Ruhrkarbon). In: Wrede, V. (ed.) Stratigraphie von Deutschland V – Das Oberkarbon (Pennsylvanium) in Deutschland. Courier-Forschungsinstitut Senckenberg, Frankfurt am Main, 254, 225–254.
    [Google Scholar]
  92. Wüstefeld, P., Hilse, U., Koehrer, B., Adelmann, D. and Hilgers, C. 2017. Critical evaluation of an Upper Carboniferous tight gas sandstone reservoir analog: Diagenesis and petrophysical aspects. Marine and Petroleum Geology, 86, 689–710, https://doi.org/10.1016/j.marpetgeo.2017.05.034
    [Google Scholar]
  93. Yin, P., Qi, L. et al.2018. Application of element logging to lithologic identification of key horizons in Sichuan–Chongqing gas provinces. Natural Gas Industry B, 5, 132–138, https://doi.org/10.1016/j.ngib.2018.01.005
    [Google Scholar]
  94. Zhang, C., Liu, S. et al.1997. Physiochemical, mineralogical, and isotopic characterization of magnetite-rich iron oxides formed by thermophilic iron-reducing bacteria. Geochimica et Cosmochimica Acta, 61, 4621–4632, https://doi.org/10.1016/S0016-7037(97)00257-3
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2023-020
Loading
/content/journals/10.1144/petgeo2023-020
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error