1887
Clinoforms and Clinothems: Fundamental Elements of Basin Infill
  • E-ISSN: 1365-2117

Abstract

[Abstract

This special issue dealing with the recent advances on modern and ancient clinoform‐stratified sedimentary successions arises from a European Geoscience Union (EGU) session “Clinoform drivers and stratigraphic products in siliciclastic and carbonate successions”, Vienna, April 2018. Clinoforms and clinothems represent a dominant architectural style of strata in many sedimentary environments, including deltaic and nondeltaic shorelines in both marine and lacustrine settings, and are one of the key building blocks of the sedimentary record. This Special Issue in Basin Research aspires to represent a step forward in understanding formation and preservation of these fundamental stratigraphic elements. As this Special Issue documents, a comprehensive understanding of clinoformal strata requires a multidisciplinary and multi‐scale approach. Sixteen papers present case studies from a variety of tectonic settings worldwide, investigated with an array of methods, including seismo‐stratigraphy, well logs, cores, high‐resolution biostratigraphy, outcrop studies and modern bathymetric data. While observations document sedimentary processes and products in sedimentary basins, numerical models are necessary to provide a quantitative basis for the extrapolation of these processes and strata at different temporal and spatial scales. The papers highlight at least five main research avenues that we briefly introduce and discuss below: (a) clinoforms and clinothems as sedimentary archives; (b) the nested nature of clinoformal strata and implications for the trajectory of the rollover point(s); (c) quantitative clinoform parameters and dynamic indices; (d) architecture, growth and sequence stratigraphy of marine versus lacustrine clinoformal strata; and (e) clinoforms and geological time. This introduction also contains brief descriptions of each paper of the Special Issue.

,

Clinoforms and clinothems represent the dominant architectural style in many sedimentary basins and are widely recognized as one of the fundamental building blocks of the stratigraphic record.

]
Loading

Article metrics loading...

/content/journals/10.1111/bre.12446
2020-04-06
2024-04-26
Loading full text...

Full text loading...

References

  1. Aadland, T., Sadler, P. M., & Helland‐Hansen, W. (2018). Geometric interpretation of time‐scale dependent sedimentation rates. Sedimentary Geology, 371, 32–40. https://doi.org/10.1016/j.sedgeo.2018.04.003
    [Google Scholar]
  2. Alan, A. D., Jablonska, D., Donato, V. D., Mazzoli, S., Spina, V., Celma, C. D., & Tondi, E. (2019). Sedimentological and stratigraphic signature of the Plio‐Pleistocene tectonic events in the Southern Apennines, Italy: The Calvello‐Anzi Basin case study. Marine and Petroleum Geology, 116, 104198. https://doi.org/10.1016/j.marpetgeo.2019.104198
    [Google Scholar]
  3. Alexander, C. R., DeMaster, D. J., & Nittrouer, C. A. (1991). Sediment accumulation in a modern epicontinental‐shelf setting: The Yellow Sea. Marine Geology, 98, 51–72. https://doi.org/10.1016/0025‐3227(91)90035‐3
    [Google Scholar]
  4. Amorosi, A., Bruno, L., Campo, B., Costagli, B., Dinelli, E., Hong, W., … Vaiani, S. C. (2019). Tracing clinothem geometry and sediment pathways in the prograding Holocene Po Delta system through integrated core stratigraphy. Basin Research, 32, 206–215.
    [Google Scholar]
  5. Amorosi, A., Maselli, V., & Trincardi, F. (2016). Onshore to offshore anatomy of a late Quaternary source‐to‐sink system (Po Plain‐Adriatic Sea, Italy). Earth‐Science Reviews, 153, 212–237.
    [Google Scholar]
  6. Anderson, J. B., Rodriguez, A., Abdulah, K., Fillon, R. H., Banfield, L. A., McKLeown, H. A., & Wellner, J. S., (2004). Late quaternary stratigraphic evolution of the northern Gulf of Mexico margin: A synthesis. In J. B., Anderson & R. H.Fillon, (Eds.), Late quaternary stratigraphic evolution of the northern Gulf of Mexico margin (Vol. 79, pp. 1–23). Special Publication. Society of Economic Paleontologists and Mineralogists (SEPM).
    [Google Scholar]
  7. Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., & Milliken, K. T. (2014). Variable response of coastal environments of the northwestern Gulf of Mexico to sea‐level rise and climate change: Implications for future change. Marine Geology, 352, 348–366. https://doi.org/10.1016/j.margeo.2013.12.008
    [Google Scholar]
  8. Anderson, J. B., Wallace, D. J., Simms, A. R., Rodriguez, A. B., Weight, R. W., & Taha, Z. P. (2016). Recycling sediments between source and sink during a eustatic cycle: Systems of late Quaternary northwestern Gulf of Mexico Basin. Earth‐Science Reviews, 153, 111–138. https://doi.org/10.1016/j.earscirev.2015.10.014
    [Google Scholar]
  9. Anell, I., Midtkandal, I., & Braathen, A. (2014). Trajectory analysis and inferences on geometric relationships of an Early Triassic prograding clinoform succession on the northern Barents Shelf. Marine and Petroleum Geology, 54, 167–179. https://doi.org/10.1016/j.marpetgeo.2014.03.005
    [Google Scholar]
  10. Bahr, A., Arz, H. W., Lamy, F., & Wefer, G. (2006). Late glacial to Holocene paleoenvironmental evolution of the Black Sea, reconstructed with stable oxygen isotope records obtained on ostracod shells. Earth and Planetary Science Letters, 241(3–4), 863–875. https://doi.org/10.1016/j.epsl.2005.10.036
    [Google Scholar]
  11. Beelen, D., Jackson, C.‐A.‐L., Patruno, S., Hodgson, D. M., & Trabucho Alexandre, J. P. T. (2019). The effects of differential compaction on clinothem geometries and shelf‐edge trajectories. Geology, 47(11), 1011–1014. https://doi.org/10.1130/G46693.1
    [Google Scholar]
  12. Berné, S., Jouet, G., Bassetti, M. A., Dennielou, B., & Taviani, M. (2007). Late Glacial Preboreal sea‐level rise recorded by the Rhône deltaic system (NW Mediterranean). Marine Geology, 245, 65–88. https://doi.org/10.1016/j.margeo.2007.07.006
    [Google Scholar]
  13. Blackwelder, E. (1909). The valuation of unconformities. The Journal of Geology, 17(3), 289–299. https://doi.org/10.1086/621610
    [Google Scholar]
  14. Blair, N. E., & Aller, R. C. (2012). The fate of terrestrial organic carbon in the marine environment. Annual Review of Marine Science, 4, 401–423. https://doi.org/10.1146/annurev‐marine‐120709‐142717
    [Google Scholar]
  15. Bohacs, K. M., Carroll, A. R., & Neal, J. E. (2003). Lessons from large lake systems—thresholds, nonlinearity, and strange attractors. In Chan, M. A. & Archer, A. W. (Eds.), Extreme depositional environments: Mega end members in geologic time: GSA Special Paper, 370 (pp. 75–90). Boulder, CO: Geological Society of America.
    [Google Scholar]
  16. Bohacs, K. M., Carroll, A. R., Neal, J. E., & Mankiewicz, P. J. (2000). Lake‐basin type, source potential, and hydrocarbon character: An integrated sequence‐stratigraphic—geochemical framework in Gierlowski‐Kordesch, E. and Kelts, K., (editors), Lake Basins Through Space and Time. AAPG Studies in Geology, 46, 3–37.
    [Google Scholar]
  17. Bohacs, K. M., Lazar, O. R., & Demko, T. M. (2014). Parasequence types in shelfal mudstone strata—Quantitative observations of lithofacies and stacking patterns, and conceptual link to modern depositional regimes. Geology, 42(2), 131–134. https://doi.org/10.1130/G35089.1
    [Google Scholar]
  18. Bohacs, K. M., Neal, J. E., Carroll, A. R., & Reynolds, D. J. (2000). Lakes are not small oceans! Sequence stratigraphy in lacustrine basins. Annual Meeting Expanded Abstracts ‐ American Association of Petroleum Geologists, 14.
  19. Bruno, L., Bohacs, K. M., Campo, B., Drexler, T. M., Rossi, V., Sammartino, I., … Amorosi, A. (2017). Early Holocene transgressive palaeogeography in the Po coastal plain (northern Italy). Sedimentology, 64(7), 1792–1816. https://doi.org/10.1111/sed.12374
    [Google Scholar]
  20. Bryn, B. K., Ahokas, J., Patruno, S., Schjelderup, S., Hinna, C., Lowrey, C., & Escalona, A. (2019). Exploring the reservoir potential of Lower Cretaceous Clinoforms in the Fingerdjupet Subbasin. Norwegian Barents Sea. Basin Research, 32, 332–347.
    [Google Scholar]
  21. Bullimore, S., Henriksen, S., Liestøl, F. M., & Helland‐Hansen, W. (2005). Clinoform stacking patterns, shelf‐edge trajectories and facies associations in Tertiary coastal deltas, offshore Norway: Implications for the prediction of lithology in prograding systems. Norwegian Journal of Geology/Norsk Geologisk Forening, 85, 169–187.
    [Google Scholar]
  22. Burgess, P. M., & Hovius, N. (1998). Rates of delta progradation during highstands: Consequences for timing of deposition in deep‐marine systems. Journal of the Geological Society, 155(2), 217–222. https://doi.org/10.1144/gsjgs.155.2.0217
    [Google Scholar]
  23. Burgess, P. M., Masiero, I., Toby, S. C., & Duller, R. A. (2019). A big fan of signals? Exploring autogenic and allogenic process and product in a numerical stratigraphic forward model of submarine‐fan development. Journal of Sedimentary Research, 89(1), 1–12. https://doi.org/10.2110/jsr.2019.3
    [Google Scholar]
  24. Burgess, P. M., Steel, R. J., Granjeon, D. I. D. I. E. R., Hampson, G. J., & Dalrymple, R. W. (2008). Stratigraphic forward modeling of basin‐margin clinoform systems: Implications for controls on topset and shelf width and timing of formation of shelf‐edge deltas. Recent Advances in Models of Siliciclastic shallow‐marine Stratigraphy, 90, 35–45. https://doi.org/10.2110/pec.08.90.0035
    [Google Scholar]
  25. Carroll, A. R., & Bohacs, K. M. (1999). Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27, 99–102. https://doi.org/10.1130/0091‐7613(1999)027<0099:SCOALB>2.3.CO;2
    [Google Scholar]
  26. Carvajal, C., & Steel, R. J. (2006). Thick turbidite successions from supply‐dominated shelves during sea‐level highstand. Geology, 34, 665–669. https://doi.org/10.1130/G22505.1
    [Google Scholar]
  27. Carvajal, C., Steel, R., & Petter, A. (2009). Sediment supply: The main driver of shelf‐margin growth. Earth‐Science Reviews, 96(4), 221–248. https://doi.org/10.1016/j.earscirev.2009.06.008
    [Google Scholar]
  28. Cattaneo, A., Correggiari, A., Langone, L., & Trincardi, F. (2003). The late‐Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations. Marine Geology, 193, 61–91. https://doi.org/10.1016/S0025‐3227(02)00614‐X
    [Google Scholar]
  29. Cattaneo, A., & Trincardi, F. (1999). The late‐Quaternary transgressive record in the Adriatic epicontinental sea: Basin widening and facies partitioning. Society for Sedimentary Geology Special Publication, 64, 127–146. https://doi.org/10.2110/pec.99.64.0127
    [Google Scholar]
  30. Cattaneo, A., Trincardi, F., Asioli, A., & Correggiari, A. (2007). The Western Adriatic Shelf Clinoform: Energy‐limited bottomset. Continental Shelf Research, 27, 506–525.
    [Google Scholar]
  31. Catuneanu, O. (2019a). Model‐independent Sequence Stratigraphy. Earth‐science Reviews, 188, 312–388.
    [Google Scholar]
  32. Catuneanu, O. (2019b). Scale in sequence stratigraphy. Marine and Petroleum Geology, 106, 128–159. https://doi.org/10.1016/j.marpetgeo.2019.04.026
    [Google Scholar]
  33. Chen, S., Steel, R., Wang, H., Zhao, R., & Olariu, C. (2019). Clinoform growth and sediment flux into late Cenozoic Qiongdongnan shelf margin. South China Sea. Basin Research, 32, 302–319.
    [Google Scholar]
  34. Cosgrove, G. I., Hodgson, D. M., Poyatos‐Moré, M., Mountney, N. P., & McCaffrey, W. D. (2018). Filter or conveyor? Establishing relationships between clinoform rollover trajectory, sedimentary process regime, and grain character within intrashelf clinothems, offshore New Jersey, USA. Journal of Sedimentary Research, 88(8), 917–941. https://doi.org/10.2110/jsr.2018.44
    [Google Scholar]
  35. Covault, J. A., & Graham, S. A. (2010). Submarine fans at all sea‐level stands: Tectono‐morphologic and climatic controls on terrigenous sediment delivery to the deep sea. Geology, 38(10), 939–942. https://doi.org/10.1130/G31081.1
    [Google Scholar]
  36. Eberli, G. P., & Ginsburg, R. N. (1987). Segmentation and coalescence of Cenozoic carbonate platforms, northwestern Great Bahama Bank. Geology, 15(1), 75–79. https://doi.org/10.1130/0091‐7613(1987)15<75:SACOCC>2.0.CO;2
    [Google Scholar]
  37. Eide, C. H., Klausen, T. G., Katkov, D., Suslova, A. A., & Helland‐Hansen, W. (2018). Linking an Early Triassic delta to antecedent topography: Source‐to‐sink study of the southwestern Barents Sea margin. GSA Bulletin, 130(1‐2), 263–283. https://doi.org/10.1130/B31639.1
    [Google Scholar]
  38. Fanget, A.‐S., Bassetti, M.‐A., Arnaud, M., Chiffoleau, J.‐F., Cossa, D., Goineau, A., … Berné, S. (2013). Historical evolution and extreme climate events during the last 400 years on the Rhone prodelta (NW Mediterranean). Marine Geology, 346, 375–391. https://doi.org/10.1016/j.margeo.2012.02.007
    [Google Scholar]
  39. Fanget, A.‐S., Berné, S., Jouet, G., Bassetti, M.‐A., Dennielou, B., Maillet, G. M., & Tondut, M. (2014). Impact of relative sea level and rapid climate changes on the architecture and lithofacies of the Holocene Rhone subaqueous delta (Western Mediterranean Sea). Sedimentary Geology, 305, 35–53. https://doi.org/10.1016/j.sedgeo.2014.02.004
    [Google Scholar]
  40. Gamberi, F., Pellegrini, C., Dalla Valle, G., Scarponi, D., Bohacs, K., & Trincardi, F. (2019). Compound and hybrid clinothems of the last lowstand Mid‐Adriatic Deep: Processes, depositional environments, controls and implications for stratigraphic analysis of prograding systems. Basin Research, 32, 363–377.
    [Google Scholar]
  41. Gan, Y., Steel, R. J., Olariu, C., & De Almeida, F.Jr. (2019). Facies and architectural variability of sub‐seismic slope‐channel fills in prograding clinoforms, Mid‐Jurassic Neuquén Basin. Argentina. Basin Research, 32, 348–362.
    [Google Scholar]
  42. Gong, C., Blum, M. D., Wang, Y., Lin, C., & Xu, Q. (2018). Can climatic signals be discerned in a deep‐water sink?: An answer from the Pearl River source‐to‐sink sediment‐routing system. GSA Bulletin, 130(3–4), 661–677. https://doi.org/10.1130/B31578.1
    [Google Scholar]
  43. Gong, C., Steel, R. J., Wang, Y., Lin, C., & Olariu, C. (2016). Shelf‐margin architecture variability and its role in sediment‐budget partitioning into deep‐water areas. Earth‐Science Reviews, 154, 72–101. https://doi.org/10.1016/j.earscirev.2015.12.003
    [Google Scholar]
  44. Gong, C., Sztano, O., Steel, R. J., Xian, B., Galloway, W. E., & Bada, G. (2018). Critical differences in sediment delivery & partitioning between marine and lacustrine basins: A comparison of marine and lacustrine aggradational to progradational clinothem pairs. Geological Society of America, Bull., https://doi.org/10.1130/B32042.1
    [Google Scholar]
  45. Goni, M. A., Monacci, N., Gisewhite, R., Crockett, J., Nittrouer, C., Ogston, A., … Aalto, R. (2008). Terrigenous organic matter in sediments from the Fly River delta‐clinoform system (Papua New Guinea). Journal of Geophysical Research, 113(F1), https://doi.org/10.1029/2006JF000653
    [Google Scholar]
  46. Goodbred, S. L., Kuehl, S. A., Steckler, M. S., & Sarker, M. H. (2003). Controls on facies distribution and stratigraphic preservation in the Ganges‐Brahmaputra delta sequence. Sedimentary Geology, 155, 301–316. https://doi.org/10.1016/S0037‐0738(02)00184‐7
    [Google Scholar]
  47. Grotzinger, J. P., Gupta, S., Malin, M. C., Rubin, D. M., Schieber, J., Siebach, K., … Wilson, S. A. (2015). Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science, 350(6257), aac7575. https://doi.org/10.1126/science.aac7575
    [Google Scholar]
  48. Hampson, G. J. (2010). Sediment dispersal and quantitative stratigraphic architecture across an ancient shelf. Sedimentology, 57(1), 96–141. https://doi.org/10.1111/j.1365‐3091.2009.01093.x
    [Google Scholar]
  49. Haq, B. U., Hardenbol, J., & Vail, P. R. (1988). Mesozoic and Cenozoic chronostratigraphy and cycles of sea‐level change. In C. K.Wilgus, B. S.Hastings, C. G. St. C.Kendall, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea‐level changes: An integrated approach (Vol. 42, pp. 7–108). Tulsa, OK: SEPM Special Publication.
    [Google Scholar]
  50. Hedges, J. I., Keil, R. G., & Benner, R. (1997). What happens to terrestrial organic matter in the ocean?Organic Geochemistry, 27(5–6), 195–212. https://doi.org/10.1016/S0146‐6380(97)00066‐1
    [Google Scholar]
  51. Helland‐Hansen, W., & Gjelberg, J. G. (1994). Conceptual basis and variability in sequence stratigraphy: A different perspective. Sedimentary Geology, 92(1–2), 31–52. https://doi.org/10.1016/0037‐0738(94)90053‐1
    [Google Scholar]
  52. Helland‐Hansen, W., & Hampson, G. J. (2009). Trajectory analysis: Concepts and applications. Basin Research, 21(5), 454–483. https://doi.org/10.1111/j.1365‐2117.2009.00425.x
    [Google Scholar]
  53. Helland‐Hansen, W., & Martinsen, O. J. (1996). Shoreline trajectories and sequences: Description of variable depositional‐dip scenarios. Journal of Sedimentary Research, 66(4), 670–688. https://doi.org/10.1306/d42683dd‐2b26‐11d7‐8648000102c1865d
    [Google Scholar]
  54. Henriksen, S., Hampson, G. J., Helland‐Hansen, W., Johannessen, E. P., & Steel, R. J. (2009). Shelf edge and shoreline trajectories, a dynamic approach to stratigraphic analysis. Basin Research, 21(5), 445–453. https://doi.org/10.1111/j.1365‐2117.2009.00432.x
    [Google Scholar]
  55. Hodgson, D. M., Browning, J. V., Miller, K. G., Hesselbo, S. P., Poyatos‐Moré, M., Mountain, G. S., & Proust, J. N. (2018). Sedimentology, stratigraphic context, and implications of Miocene intrashelf bottomset deposits, offshore New Jersey. Geosphere, 14(1), 95–114. https://doi.org/10.1130/GES01530.1
    [Google Scholar]
  56. Houseknecht, D. W., Bird, K. J., & Schenk, C. J. (2009). Seismic analysis clinoform depositional sequences and shelf‐margin trajectories in Lower Cretaceous (Albian) strata, Alaska North Slope. Basin Research, 21(5), 644‐654. https://doi.org/10.1111/j.1365‐2117.2008.00392.x
    [Google Scholar]
  57. Hubbard, S. M., Fildani, A., Romans, B. W., Covault, J. A., & McHargue, T. R. (2010). High‐relief slope clinoform development: Insights from outcrop, Magallanes Basin. Chile. Journal of Sedimentary Research, 80(5), 357–375. https://doi.org/10.2110/jsr.2010.042
    [Google Scholar]
  58. Jouet, G., Berné, S., Rabineau, M., Bassetti, M. A., Bernier, P., Dennielou, B., … Taviani, M. (2006). Shoreface migrations at the shelf edge and sea‐level changes around the Last Glacial Maximum (Gulf of Lions, NW Mediterranean). Marine Geology, 234(1), 21–42. https://doi.org/10.1016/j.margeo.2006.09.012
    [Google Scholar]
  59. Klausen, T. G., & Helland‐Hansen, W. (2019). Methods for restoring and describing ancient clinoform surfaces. Journal of Sedimentary Research, 89(10), 918–918. https://doi.org/10.2110/jsr.2019.50
    [Google Scholar]
  60. Korus, J. T., & Fielding, C. R. (2015). Asymmetry in Holocene river deltas: Patterns, controls, and stratigraphic effects. Earth‐Science Reviews, 150, 219–242. https://doi.org/10.1016/j.earscirev.2015.07.013
    [Google Scholar]
  61. Kuehl, S. A., DeMaster, D. J., & Nittrouer, C. A. (1986). Nature of sediment accumulation on the Amazon continental shelf. Continental Shelf Research, 6(1), 209–225. https://doi.org/10.1016/0278‐4343(86)90061‐0
    [Google Scholar]
  62. Kuehl, S., Levy, B. M., Moore, W. S., & Allison, M. A. (1997). Subaqueous delta of the Ganges‐Brahmaputra river system. Marine Geology, 144, 81–96. https://doi.org/10.1016/S0025‐3227(97)00075‐3
    [Google Scholar]
  63. Li, C., Chen, Q., Zhang, J., Yang, S., & Fan, D. (2000). Stratigraphy and paleoenvironmental changes in the Yangtze Delta during the Late Quaternary. Journal of Asian Earth Sciences, 18(4), 453–469. https://doi.org/10.1016/S1367‐9120(99)00078‐4
    [Google Scholar]
  64. Liu, J., Xian, B., Ji, Y., Gong, C., Wang, J., Wang, Z., … Dou, L. (2020). Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: The Eocene Dongying Depression, Bohai Bay Basin, east China. Marine and Petroleum Geology, 114, 104197. https://doi.org/10.1016/j.marpetgeo.2019.104197
    [Google Scholar]
  65. Liu, J. P., Xue, Z., Ross, K., Wang, H. J., Yang, Z. S., Li, A. C., & Gao, S. (2009). Fate of sediments delivered to the sea by Asian large rivers: Long‐distance transport and formation of remote alongshore clinothems. The Sedimentary Record, 7(4), 4–9. https://doi.org/10.2110/sedred.2009.4.4
    [Google Scholar]
  66. Lobo, F. J., & Ridente, D. (2014). Stratigraphic architecture and spatio‐temporal variability of high‐frequency (Milankovitch) depositional cycles on modern continental margins: An overview. Marine Geology, 352, 215–247. https://doi.org/10.1016/j.margeo.2013.10.009
    [Google Scholar]
  67. Lyons, R. P., Scholz, C. A., Buoniconti, M. R., & Martin, M. R. (2011). Late Quaternary stratigraphic analysis of the Lake Malawi Rift, East Africa: An integration of drill‐core and seismic‐reflection data. Palaeogeography, Palaeoclimatology, Palaeoecology, 303(1–4), 20–37. https://doi.org/10.1016/j.palaeo.2009.04.014
    [Google Scholar]
  68. Madof, A. S., Harris, A. D., & Connell, S. D. (2016). Nearshore along‐strike variability: Is the concept of the systems tract unhinged?Geology, 44(4), 315–318. https://doi.org/10.1130/G37613.1
    [Google Scholar]
  69. Magyar, I., Krezsek, C., & Tari, G. (2019). Clinoforms as paleogeographic tools: Development of the Danube catchment above the deep Paratethyan basins in Central and Southeast Europe. Basin Research, 32, 320–331.
    [Google Scholar]
  70. Magyar, I., Radivojević, D., Sztanó, O., Synak, R., Ujszászi, K., & Pócsik, M. (2013). Progradation of the paleo‐Danube shelf margin across the Pannonian Basin during the Late Miocene and Early Pliocene. Global and Planetary Change, 103, 168–173. https://doi.org/10.1016/j.gloplacha.2012.06.007
    [Google Scholar]
  71. Miall, A. D. (2016). The valuation of unconformities. Earth‐Science Reviews, 163, 22–71. https://doi.org/10.1016/j.earscirev.2016.09.011
    [Google Scholar]
  72. Michels, K. H., Kudrass, H. R., Hübscher, C., Suckow, A., & Wiedicke, M. (1998). The submarine delta of the Ganges – Brahmaputra: Cyclone‐dominated sedimentation patterns. Marine Geology, 149, 133–154. https://doi.org/10.1016/S0025‐3227(98)00021‐8
    [Google Scholar]
  73. Midtkandal, I., Faleide, T. S., Faleide, J. I., Planke, S., Anell, I., & Nystuen, J. P. (2019). Nested intrashelf platform clinoforms—Evidence of shelf platform growth exemplified by Lower Cretaceous strata in the Barents Sea. Basin Research, 32, 216–223.
    [Google Scholar]
  74. Milliman, J. D., & Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100(5), 525–544. https://doi.org/10.1086/629606
    [Google Scholar]
  75. Mitchum, R. M.Jr, Vail, P. R., & Thompson, S.III. (1977). Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis: Section 2. Application of seismic reflection configuration to stratigraphic interpretation.
  76. Neal, J. E., Abreu, V., Bohacs, K. M., Feldman, H. R., & Pederson, K. H. (2016). Accommodation succession (δA/δS) sequence stratigraphy: Observational method, utility and insights into sequence boundary formation. Journal of the Geological Society, 173(5), 803–816.
    [Google Scholar]
  77. Neill, C. F., & Allison, M. A. (2005). Subaqueous deltaic formation on the Atchafalaya Shelf. Louisiana. Marine Geology, 214(4), 411–430. https://doi.org/10.1016/j.margeo.2004.11.002
    [Google Scholar]
  78. Nienhuis, J. H., Ashton, A. D., Edmonds, D. A., Hoitink, A. J. F., Kettner, A. J., Rowland, J. C., & Törnqvist, T. E. (2020). Global‐scale human impact on delta morphology has led to net land area gain. Nature, 577(7791), 514–518. https://doi.org/10.1038/s41586‐019‐1905‐9
    [Google Scholar]
  79. Nittrouer, C. A.
    , Austin Jr., J. A., Field, M. E., Kravitz, J. H., Syvitski, J. P. M., & Wiberg, P. L. (Eds.), (2007). Writing a Rosetta stone: insights into continental‐margin sedimentary processes and strata. Continental margin sedimentation: from sediment transport to sequence stratigraphy. Special Publication, 37.
  80. Nittrouer, C. A., Kuehl, S. A., Figueiredo, G., Allison, M. A., Sommerfield, C. K., Rine, J. M., … Silveira, O. M. (1996). The geological record preserved by Amazon shelf sedimentation. Continental Shelf Research, 16, 817–841. https://doi.org/10.1016/0278‐4343(95)00053‐4
    [Google Scholar]
  81. Olariu, C., & Steel, R. J. (2009). Influence of point‐source sediment supply on modern slope morphology: Implications for interpretation of ancient shelf margins. Basin Research, 21, 484–501. https://doi.org/10.1111/j.1365‐2117.2009.00420.x
    [Google Scholar]
  82. Olariu, C., Steel, R. J., Vann, N. K., Tudor, E. P., Shin, M., Winter, R. R., … Gutierrez, R. (2019). Criteria for recognizing shelf‐slope clinoforms in outcrop; Jurassic Lajas and Los Molles formations, S. Neuquén Basin, Argentina. Basin Research, 32, 279–292.
    [Google Scholar]
  83. Palamenghi, L., Schwenk, T., Spiess, V., & Kudrass, H. R. (2011). Seismostratigraphic analysis with centennial to decadal time resolution of the sediment sink in the Ganges‐Brahmaputra subaqueous delta. Continental Shelf Research, 31(6), 712–730. https://doi.org/10.1016/j.csr.2011.01.008
    [Google Scholar]
  84. Patruno, S., Hampson, G. J., & Jackson, C.‐A.‐L. (2015). Quantitative characterisation of deltaic and subaqueous clinoforms. Earth‐Science Reviews, 142, 79–119. https://doi.org/10.1016/j.earscirev.2015.01.004
    [Google Scholar]
  85. Patruno, S., & Helland‐Hansen, W. (2018). Clinoforms and clinoform systems: Review and dynamic classification scheme for shorelines, subaqueous deltas, shelf edges and continental margins. Earth‐Science Reviews, 185, 202–233. https://doi.org/10.1016/j.earscirev.2018.05.016
    [Google Scholar]
  86. Patruno, S., Reid, W., & Jackson, C.‐ A.‐L. (2018). New insights into the unexploited reservoir potential of the Mid North Sea High (UKCS Quadrants 35–38, 41–43): a newly‐described intra Zechstein sulphate‐carbonate platform complex. In: M.Bowman, & B.Levell (Eds), Petroleum Geology of Northwest Europe: 50 Years of Learning – Proceedings of the 8th Petroleum Geology Conference (v. 8, p. 87–124). London, United Kingdom: The Geological Society. Retrieved from http://pgc.lyellcollection.org/content/early/2017/06/07/PGC8.9.full.pdf+html.
    [Google Scholar]
  87. Patruno, S., Scisciani, V., Helland‐Hansen, W., D’Intino, N., Reid, W., & Pellegrini, C. (2019). Upslope‐climbing shelf‐edge clinoforms and the stepwise evolution of the northern European glaciation (lower Pleistocene Eridanos Delta system, UK North Sea): When sediment supply overwhelms accommodation. Basin Research, 32, 224–239.
    [Google Scholar]
  88. Paumard, V., Bourget, J., Payenberg, T., George, A. D., Ainsworth, R. B., Lang, S., & Posamentier, H. W. (2020). Controls on deep‐water sand delivery beyond the shelf edge: Accommodation, sediment supply, and deltaic process regime. Journal of Sedimentary Research, 90(1), 104–130. https://doi.org/10.2110/jsr.2020.2
    [Google Scholar]
  89. Pellegrini, C., Asioli, A., Bohacs, K. M., Drexler, T. M., Feldman, H. R., Sweet, M. L., … Trincardi, F. (2018). The late Pleistocene Po River lowstand wedge in the Adriatic Sea: Controls on architecture variability and sediment partitioning. Marine and Petroleum Geology, 96, 16–50. https://doi.org/10.1016/j.marpetgeo.2018.03.002
    [Google Scholar]
  90. Pellegrini, C., Bohacs, K. M., Drexler, T. M., Gamberi, F., Rovere, M., & Trincardi, F. (2017). Identifying the sequence boundary in over‐and under‐supplied contexts: the case of the late Pleistocene adriatic continental margin. In B.Hart, N. C.Rosen, D.West, A.D’Agostino, C.Messina, M.Hoffman, & R.Wild (Eds.), Sequence stratigraphy: The future defined (p. 160–182), Proceedings of the 36th Annual Perkins‐Rosen Research Conference.
    [Google Scholar]
  91. Pellegrini, C., Maselli, V., Cattaneo, A., Piva, A., Ceregato, A., & Trincardi, F. (2015). Anatomy of a compound delta from the post‐glacial transgressive record in the Adriatic Sea. Marine Geology, 362, 43–59. https://doi.org/10.1016/j.margeo.2015.01.010
    [Google Scholar]
  92. Pellegrini, C., Maselli, V., Gamberi, F., Asioli, A., Bohacs, K. M., Drexler, T. M., & Trincardi, F. (2017). How to make a 350‐m‐thick lowstand systems tract in 17,000 years: The Late Pleistocene Po River (Italy) lowstand wedge. Geology, 45(4), 327–330. https://doi.org/10.1130/G38848.1
    [Google Scholar]
  93. Peng, Y., Steel, R. J., Olariu, C., & Rossi, V. (2018). Mixed‐energy process interactions read from a compound clinoform delta (paleo‐Orinoco Delta, Trinidad): Preservation of river and tide signals by mud‐induced wave damping. Journal of Sedimentary Research, 88, 75–90. https://doi.org/10.2110/jsr.2018.3
    [Google Scholar]
  94. Petter, A. L., Steel, R. J., Mohrig, D., Kim, W., & Carvajal, C. (2013). Estimation of the paleo‐flux of terrestrial‐derived solids and its implications for the growth of continents and long‐term biogeochemical cycles. Geological Society of America Bulletin, 125, 578–593. https://doi.org/10.1130/b30603.1
    [Google Scholar]
  95. Pirmez, C., Pratson, L. F., & Steckler, M. S. (1998). Clinoform development by advection‐diffusion of suspended sediment: Modeling and comparison to natural systems. Journal of Geophysical Research: Solid Earth, 103(B10), 24141–24157. https://doi.org/10.1029/98jb01516
    [Google Scholar]
  96. Playter, T., Corlett, H., Konhauser, K., Robbins, L., Rohais, S. É., Crombez, V., … Zonneveld, J.‐P. (2018). Clinoform identification and correlation in fine‐grained sediments: A case study using the Triassic Montney Formation. Sedimentology, 65(1), 263–302. https://doi.org/10.1111/sed.12403
    [Google Scholar]
  97. Plink‐Björklund, P. (2019). Shallow‐water deltaic clinoforms and process regime. Basin Research, 32, 251–262.
    [Google Scholar]
  98. Poyatos‐Moré, M., Jones, G. D., Brunt, R. L., Hodgson, D. M., Wild, R. J., & Flint, S. S. (2016). Mud‐dominated basin‐margin progradation: Processes and implications. Journal of Sedimentary Research, 86(8), 863–878. https://doi.org/10.2110/jsr.2016.57
    [Google Scholar]
  99. Poyatos‐Moré, M., Jones, G. D., Brunt, R. L., Tek, D. E., Hodgson, D. M., & Flint, S. S. (2019). Clinoform architecture and along‐strike facies variability through an exhumed erosional to accretionary basin margin transition. Basin Research, 31(5), 920–947. https://doi.org/10.1111/bre.12351
    [Google Scholar]
  100. Rich, J. L. (1951). Three critical environments of deposition, and criteria for recognition of rocks deposited in each of them. Geological Society of America Bulletin, 62(1), 1–20. https://doi.org/10.1130/0016‐7606(1951)62[1:TCEODA]2.0.CO;2
    [Google Scholar]
  101. Rodriguez, A. B., Simms, A. R., & Anderson, J. B. (2010). Bay‐head deltas across the northern Gulf of Mexico back step in response to the 8.2 ka cooling event. Quaternary Science Reviews, 29(27–28), 3983–3993. https://doi.org/10.1016/j.quascirev.2010.10.004
    [Google Scholar]
  102. Romans, B. W., Castelltort, S., Covault, J. A., Fildani, A., & Walsh, J. P. (2016). Environmental signal propagation in sedimentary systems across timescales. Earth‐Science Reviews, 153, 7–29. https://doi.org/10.1016/j.earscirev.2015.07.012
    [Google Scholar]
  103. Rossi, V. M., Longhitano, S. G., Mellere, D., Dalrymple, R. W., Steel, R. J., Chiarella, D., & Olariu, C. (2017). Interplay of tidal and fluvial processes in an early Pleistocene, delta‐fed, strait margin (Calabria, Southern Italy). Sedimentary Geology, 87, 14–30. https://doi.org/10.1016/j.marpetgeo.2017.02.021
    [Google Scholar]
  104. Rossi, V. M., Paterson, N. W., Helland‐Hansen, W., Klausen, T. G., & Eide, C. H. (2019). Mud‐rich delta‐scale compound clinoforms in the Triassic shelf of northern Pangea (Havert Formation, south‐western Barents Sea). Sedimentology, 66(6), 2234–2267. https://doi.org/10.1111/sed.12598
    [Google Scholar]
  105. Sadler, P. M. (1981). Sediment accumulation rates and the completeness of stratigraphic sections. The Journal of Geology, 89(5), 569–584. https://doi.org/10.1086/628623
    [Google Scholar]
  106. Salazar, M., Moscardelli, L., & Wood, L. (2016). Utilising clinoform architecture to understand the drivers of basin margin evolution: a case study in the Taranaki Basin. New Zealand. Basin Research, 28(6), 840–865. https://doi.org/10.1111/bre.12138
    [Google Scholar]
  107. Schattner, U., José Lobo, F., López‐Quirós, A., dos Passos Nascimento, J. L., & de Mahiques, M. M. (2019). What feeds shelf‐edge clinoforms over margins deprived of adjacent land sources? An example from southeastern Brazil. Basin Research, 32, 293–301.
    [Google Scholar]
  108. Schieber, J. (2003). Simple gifts and buried treasures—implications of finding bioturbation and erosion surfaces in black shales. The Sedimentary Record, 1(2), 4–8. https://doi.org/10.2110/sedred.2003.2.4
    [Google Scholar]
  109. Simms, A. R., Lambeck, K., Purcell, A., Anderson, J. B., & Rodriguez, A. B. (2007). Sea‐level history of the Gulf of Mexico since the Last Glacial Maximum with implications for the melting history of the Laurentide Ice Sheet. Quaternary Science Reviews, 26(7–8), 920–940. https://doi.org/10.1016/j.quascirev.2007.01.001
    [Google Scholar]
  110. Smith, D. G., Bailey, R. J., Burgess, P. M., & Fraser, A. J. (2015). Strata and time: Probing the gaps in our understanding. Geological Society, London, Special Publications, 404(1), 1–10. https://doi.org/10.1144/SP404.16
    [Google Scholar]
  111. Sømme, T. O., Piper, D. J. W., Deptuck, M. E., & Helland‐Hansen, W. (2011). Linking Onshore‐Offshore sediment dispersal in the Golo source‐to‐sink system (Corsica, France) during the Late Quaternary. Journal of Sedimentary Research, 81(2), 118–137. https://doi.org/10.2110/jsr.2011.11
    [Google Scholar]
  112. Stanley, D. J., & Warne, A. G. (1994). Worldwide initiation of Holocene marine deltas by deceleration of sea‐level rise. Science, 265(5169), 228–231. https://doi.org/10.1126/science.265.5169.228
    [Google Scholar]
  113. Steckler, M. S., Mountain, G. S., Miller, K. G., & Christie‐Blick, N. (1999). Reconstruction of Tertiary progradation and clinoform development on the New Jersey passive margin by 2‐D backstripping. Marine Geology, 154, 399–420. https://doi.org/10.1016/S0025‐3227(98)00126‐1
    [Google Scholar]
  114. Steel, R. J., Olariu, C., Zhang, J., & Chen, S. (2019). What is the topset of a shelf‐margin prism?Basin Research, 32, 263–278.
    [Google Scholar]
  115. Steel, R. J., & Olsen, T. (2002). Clinoforms, clinoform trajectories and deepwater sands. In J. M.Armentrout, & N. C.Rosen (Eds.), Sequence Stratigraphic Models for Exploration and Production: Evolving Methodology, Emerging Models and Application Histories (pp. 367–381). Proceeding of the 22nd Annual Bob F. Perkins Research Conference. Gulf Coast Section, Society of Economic Paleontologists and Mineralogists (GCS‐SEPM).
    [Google Scholar]
  116. Stow, D. A. V., Pudsey, C. J., Howe, J. A., Faugères, J.‐C., & Viana, A. R. (2002). Deep‐water contourite systems: modern drifts and ancient series, seismic and sedimentary characteristics (p 464). Memoirs, 22. London: Geological Society.
    [Google Scholar]
  117. Sweet, M. L., Gaillot, G. T., Jouet, G., Rittenour, T. M., Toucanne, S., Marsset, T., & Blum, M. D. (2019). Sediment routing from shelf to basin floor in the Quaternary Golo System of Eastern Corsica, France, western Mediterranean Sea. Geological Society of America Bulletin. https://doi.org/10.1130/B35181.1
    [Google Scholar]
  118. Swenson, J. B., Paola, C., Pratson, L., Voller, V. R., & Murray, A. B. (2005). Fluvial and marine controls on combined subaerial and subaqueous delta progradation: Morphodynamic modeling of compound‐clinoform development. Journal of Geophysical Research: Earth Surface, 110, 0148–0227.
    [Google Scholar]
  119. Sztanó, O., Szafián, P., Magyar, I., Horányi, A., Bada, G., Hughes, D. W., … Wallis, R. J. (2013). Aggradation and progradation controlled clinothems and deep‐water sand delivery model in the Neogene Lake Pannon, Makó Trough, Pannonian Basin, SE Hungary. Global and Planetary Change, 103, 149–167. https://doi.org/10.1016/j.gloplacha.2012.05.026
    [Google Scholar]
  120. Ta, T. K. O., Nguyen, V. L., Tateishi, M., Kobayashi, I., Tanabe, S., & Saito, Y. (2002). Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quaternary Science Reviews, 21(16–17), 1807–1819. https://doi.org/10.1016/S0277‐3791(02)00007‐0
    [Google Scholar]
  121. Tanabe, S., Ta, T. K. O., Nguyen, V. L., Tateishi, M., Kobayashi, I., & Saito, O. Y. (2003). Delta evolution model inferred from Holocene Mekong Delta, Southern Vietnam. In E. H.Sidi, D.Nummedal, P.Imbert, H.Darman, & H. W.Posamentier (Eds.), Tropical deltas of southeast asia—sedimentology, stratigraphy, and petroleum geology (pp. 175–188). Tulsa, OK: SEPM, Special Publication 76.
    [Google Scholar]
  122. Tesch, P., Reece, R. S., Markello, J. R., Laya, J. C., & Pope, M. C. (2019). Adding the missing third and fourth dimensions to trajectory analysis in carbonate systems. Basin Research, 32, 388–401.
    [Google Scholar]
  123. Trincardi, F., Amorosi, A., Bosman, A., Correggiari, A., Madricardo, F., & Pellegrini, C. (2019). Ephemeral rollover points and clinothem evolution in the modern Po Delta based on repeated bathymetric surveys. Basin Research, 32, 402–418.
    [Google Scholar]
  124. Trincardi, F., Asioli, A., Cattaneo, A., Correggiari, A., & Langone, L. (1996). Stratigraphy of the late‐Quaternary deposits in the Central Adriatic basin and the record of short‐term climatic events. Memorie Istituto Italaliano Idrobiologia, 55, 39–70.
    [Google Scholar]
  125. Trincardi, F., & Correggiari, A. (2000). Quaternary forced regression deposits in the Adriatic basin and the record of composite sea‐level cycles. Geological Society, London, Special Publications, 172(1), 245–269. https://doi.org/10.1144/GSL.SP.2000.172.01.12
    [Google Scholar]
  126. Vail, P. R., Mitchum, R. M.Jr, & Thompson, S.III. (1977). Seismic stratigraphy and global changes of sea level, part 3: Relative changes of sea level from coastal onlap. In C. E.Payton (Ed.), Seismic stratigraphy — applications to hydrocarbon exploration (pp. 63–81). Memoir, vol. 26. Tulsa, OK: American Association of Petroleum Geologists.
    [Google Scholar]
  127. Van Wagoner, J. C., Mitchum Jr, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Siliciclastic sequence stratigraphy in well logs, core, and outcrops: concepts for high‐resolution correlation of time and facies. American Association of Petroleum Geologists Methods in Exploration Series, vol. 7. 55 pp.
  128. Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S., & Hardenbol, J. (1988). An overview of sequence stratigraphy and key definitions. In C. K.Wilgus, B. S.Hastings, C. G. S. C.Kendall, H. W.Posamentier, C. A.Ross, & J. C.Van Wagoner (Eds.), Sea level changes – an integrated approach. Special Publication (Vol. 42, pp. 39–45). Tulsa, OK: Society of Economic Paleontologists and Mineralogists (SEPM).
    [Google Scholar]
  129. Walsh, J. P., Nittrouer, C. A., Palinkas, C. M., Ogston, A. S., Sternberg, R. W., & Brunskill, G. J. (2004). Clinoform mechanics in the Gulf of Papua, New Guinea. Continental Shelf Research, 24, 2487–2510. https://doi.org/10.1016/j.csr.2004.07.019
    [Google Scholar]
  130. Wang, J., Naruse, H., & Muto, T. (2019). The grade index model as a rationale for autogenic nonequilibrium responses of deltaic clinoform to relative sealevel rise. Basin Research, 32, 378–387.
    [Google Scholar]
  131. Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Ga uszka, A., … Wolfe, A. P. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269), aad2622. https://doi.org/10.1126/science.aad2622
    [Google Scholar]
  132. Wheatcroft, R. A., Sommerfield, C. K., Drake, D. E., Borgeld, J. C., & Nittrouer, C. A. (1997). Rapid and widespread dispersal of flood sediment on the northern California margin. Geology, 25(2), 163–166. https://doi.org/10.1130/0091‐7613(1997)025<0163:RAWDOF>2.3.CO;2
    [Google Scholar]
  133. Wheeler, H. E. (1958). Time‐stratigraphy. AAPG Bulletin, 42(5), 1047–1063.
    [Google Scholar]
  134. Xue, Z., Liu, J. P., DeMaster, D., Van Nguyen, L., & Ta, T. K. O. (2010). Late Holocene evolution of the Mekong subaqueous delta, southern Vietnam. Marine Geology, 269(1–2), 46–60. https://doi.org/10.1016/j.margeo.2009.12.005
    [Google Scholar]
  135. Zhang, J., Olariu, C., Steel, R., & Kim, W. (2019). Climatically controlled lacustrine clinoforms: Theory and modelling results. Basin Research, 32, 240–250.
    [Google Scholar]
  136. Zhang, J., Steel, R. J., & Ambrose, W. (2017). Paleocene Wilcox cross‐shelf channel‐belt history and shelf‐margin growth: Key to Gulf of Mexico sediment delivery. Sediment. Geology, 362, 53–65. https://doi.org/10.1016/j.sedgeo.2017.10.001
    [Google Scholar]
  137. Zhuo, H., Wang, Y., Sun, Z., Wang, Y., Xu, Q., Hou, P., … Xu, S. (2019). Along‐strike variability in shelf‐margin morphology and accretion pattern: An example from the northern margin of the South China Sea. Basin Research, 31(3), 431–460. https://doi.org/10.1111/bre.12329
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12446
Loading
/content/journals/10.1111/bre.12446
Loading

Data & Media loading...

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error