1887
Volume 33, Issue 1
  • E-ISSN: 1365-2117
PDF

Abstract

Abstract

The processes and deposits of deep‐water submarine channels are known to be influenced by a wide variety of controlling factors, both allocyclic and autocyclic. However, unlike their fluvial counterparts whose dynamics are well‐studied, the factors that control the long‐term behaviour of submarine channels, particularly on slopes undergoing active deformation, remain poorly understood. We combine seismic techniques with concepts from landscape dynamics to investigate quantitatively how the growth of gravitational‐collapse structures at or near the seabed in the Niger Delta have influenced the morphology of submarine channels along their length from the shelf edge to their deep‐water counterpart. From a three dimensional (3D), time‐migrated seismic‐reflection volume, which extends over 120 km from the shelf edge to the base of slope, we mapped the present‐day geomorphic expression of two submarine channels and active structures at the seabed, and created a Digital Elevation Model (DEM). A second geomorphic surface and DEM raster—interpreted to closer approximate the most recent active channel geometries—were created through removing the thickness of hemipelagic drape across the study area. The DEM rasters were used to extract the longitudinal profiles of channel systems with seabed expression, and we evaluate the evolution of channel widths, depths and slopes at fixed intervals downslope as the channels interact with growing structures. Results show that the channel long profiles have a relatively linear form with localized steepening associated with seabed structures. We demonstrate that channel morphologies and their constituent architectural elements are sensitive to active seafloor deformation, and we use the geomorphic data to infer a likely distribution of bed shear stresses and flow velocities from the shelf edge to deep water. Our results give new insights into the erosional dynamics of submarine channels, allow us to quantify the extent to which submarine channels can keep pace with growing structures, and help us to constrain the delivery and distribution of sediment to deep‐water settings.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12460
2021-01-22
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/bre/33/1/bre12460.html?itemId=/content/journals/10.1111/bre.12460&mimeType=html&fmt=ahah

References

  1. Amblas, D., Gerber, T. P., Canals, M., Pratson, L. F., Urgeles, R., Lastras, G., & Calafat, A. M. (2011). Transient erosion in the Valencia Trough turbidite systems, NW Mediterranean Basin. Geomorphology, 130(3–4), 173–184. https://doi.org/10.1016/j.geomorph.2011.03.013
    [Google Scholar]
  2. Attal, M., Tucker, G. E., Whittaker, A. C., Cowie, P. A., & Roberts, G. P. (2008). Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment. Journal of Geophysical Research, 113, 1–16. https://doi.org/10.1029/2007JF000893
    [Google Scholar]
  3. Benesh, N., Plesch, A., & Shaw, J. H. (2014). Geometry, kinematics, and displacement characteristics of tear‐fault systems: An example from the deep‐water Niger Delta. AAPG Bulletin, 98(3), 465–482. https://doi.org/10.1306/06251311013
    [Google Scholar]
  4. Burke, K. C. B. (1996). The African Plate. South African Journal of Geology, 99, 341–409.
    [Google Scholar]
  5. Clark, I. R., & Cartwright, J. A. (2009). Interactions between submarine channel systems and deformation in deepwater fold belts: Examples from the Levant Basin, Eastern Mediterranean Sea. Marine and Petroleum Geology, 26(8), 1465–1482. https://doi.org/10.1016/j.marpetgeo.2009.05.004
    [Google Scholar]
  6. Corredor, F., Shaw, J. H., & Bilotti, F. (2005). Structural styles in the deepwater fold and thrust belts of the Niger Delta. AAPG Bulletin, 89(6), 753–780. https://doi.org/10.1306/02170504074
    [Google Scholar]
  7. Covault, J. A., Fildani, A., Romans, B. W., & McHargue, T. (2011). The natural range of submarine canyon‐and‐channel longitudinal profiles. Geosphere, 7(2), 313–332. https://doi.org/10.1130/GES00610.1
    [Google Scholar]
  8. Covault, J. A., Kostic, S., Paull, C. K., Sylvester, Z., & Fildani, A. (2017). Cyclic steps and related supercritical bedforms: Building blocks of deep‐water depositional systems, western North America. Marine Geology, 393, 4–20. https://doi.org/10.1016/j.margeo.2016.12.009
    [Google Scholar]
  9. Covault, J. A., Sylvester, Z., Hubbard, S. M., Jobe, Z. R., & Sech, R. P. (2016). The stratigraphic record of submarine‐channel evolution. The Sedimentary Record, 14, 4–11. https://doi.org/10.2110/sedred.2016.3.4
    [Google Scholar]
  10. Damuth, J. E. (1994). Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin. Marine and Petroleum Geology, 11(3), 320–346. https://doi.org/10.1016/0264‐8172(94)90053‐1
    [Google Scholar]
  11. Deptuck, M. E., Steffens, G. S., Barton, M., & Pirmez, C. (2003). Architecture and evolution of upper fan channel‐belts on the Niger Delta slope and in the Arabian Sea. Marine and Petroleum Geology, 20(6–8), 649–676. https://doi.org/10.1016/j.marpetgeo.2003.01.004
    [Google Scholar]
  12. Deptuck, M. E., Sylvester, Z., & O'Byrne, C., & (2012). Pleistocene seascape evolution above a “simple” stepped slope–Western Niger Delta. In B. E.PratherM. E.DeptuckD.MohrigB.Van Hoorn & R.B.Wynn (Eds.), Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogues (Vol. 99, pp. 199–222). SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.12.99
    [Google Scholar]
  13. Deptuck, M. E., Sylvester, Z., Pirmez, C., & O'Byrne, C. (2007). Migration‐aggradation history and 3‐D seismic geomorphology of submarine channels in the pleistocene benin‐major canyon. Western Niger Delta Slope: Marine and Petroleum Geology, 24, 406–433. https://doi.org/10.1016/j.marpetgeo.2007.01.005
    [Google Scholar]
  14. Doust, H., & Omatsola, E. (1989). Niger Delta. In J. D.Edwards, & P. A.Santogrossi (Eds.), Divergent/Passive Margin Basins, AAPG Memoir, (Vol. 48, pp. 201–238). Tulsa, USA: American Association of Petroleum Geologists.
    [Google Scholar]
  15. Ferry, J. N., Mulder, T., Parize, O., & Raillard, S. (2005). Concept of equilibrium profile in deep‐water turbidite system: Effects of local physiographic changes on the nature of sedimentary process and the geometries of deposits. Geological Society, London, Special Publications, 244(1), 181–193. https://doi.org/10.1144/GSL.SP.2005.244.01.11
    [Google Scholar]
  16. Flood, R., & Damuth, J. E. (1987). Quantitative characteristics of sinuous distributary channels on the Amazon Deep‐Sea Fan. Geological Society of America Bulletin, 98(6), 728. https://doi.org/10.1130/0016‐7606(1987)98<728:QCOSDC>2.0.CO;2
    [Google Scholar]
  17. Georgiopoulou, A., & Cartwright, J. A. (2013). A critical test of the concept of submarine equilibrium profile. Marine and Petroleum Geology, 41, 35–47. https://doi.org/10.1016/j.marpetgeo.2012.03.003
    [Google Scholar]
  18. Gerber, T. P., Amblas, D., Wolinsky, M. A., Pratson, L. F., & Canals, M. (2009). A model for the long‐profile shape of submarine canyons. Journal of Geophysical Research: Earth Surface, 114(), 1–24. https://doi.org/10.1029/2008JF001190
    [Google Scholar]
  19. Gerber, T. P., Pratson, L. F., Wolinsky, M. A., Steel, R., Mohr, J., Swenson, J. B., & Paola, C. (2008). Clinoform progradation by turbidity currents: Modeling and experiments. Journal of Sedimentary Research, 78(3), 220–238. https://doi.org/10.2110/jsr.2008.023
    [Google Scholar]
  20. Hansen, L., Janocko, M., Kane, I. A., & Kneller, B. C. (2017). Submarine channel evolution, terrace development, and preservation of intra‐channel thin‐bedded turbidites: Mahin and Avon channels, offshore Nigeria. Marine Geology, 383, 146–167. https://doi.org/10.1016/j.margeo.2016.11.011
    [Google Scholar]
  21. Heiniö, P., & Davies, R. J. (2007). Knickpoint migration in submarine channels in response to Fold Growth, Western Niger Delta. Marine and Petroleum Geology, 24, 434–449. https://doi.org/10.1016/j.marpetgeo.2006.09.002
    [Google Scholar]
  22. Hodgson, D. M., di Celma, C. N., Brunt, R. L., & Flint, S. S. (2011). Submarine slope degradation and aggradation and the stratigraphic evolution of channel‐levee systems. Journal of Geological Society, 168, 625–628. https://doi.org/10.1144/0016‐76492010‐177
    [Google Scholar]
  23. Huyghe, P., Foata, M., Deville, E., & Mascle, G.; Caramba Working Group . (2004). Channel profiles through the active thrust front of the southern Barbados prism. Geology, 32(5), 429–432. https://doi.org/10.1130/G20000.1
    [Google Scholar]
  24. Jobe, Z. R., Howes, N. C., & Auchter, N. C. (2016). Comparing submarine and fluvial channel kinematics: Implications for stratigraphic architecture. Geology, 44(11), 931–934. https://doi.org/10.1130/G38158.1
    [Google Scholar]
  25. Jobe, Z. R., Sylvester, Z., Parker, A. O., Howes, N. C., Slowey, N., & Pirmez, C. (2015). Rapid adjustment of submarine channel architecture to changes in sediment supply. Journal of Sedimentary Research, 85(6), 729–753. https://doi.org/10.2110/jsr.2015.30
    [Google Scholar]
  26. Jolly, B. A., Lonergan, L., & Whittaker, A. C. (2016). Growth history of fault‐related folds and interaction with seabed channels in the toe‐thrust region of the deep‐water Niger delta. Marine and Petroleum Geology, 70, 58–76. https://doi.org/10.1016/j.marpetgeo.2015.11.003
    [Google Scholar]
  27. Jolly, B. A., Whittaker, A. C., & Lonergan, L. (2017). Quantifying the geomorphic response of modern submarine channels to actively growing folds and thrusts, deep‐water Niger Delta. Geological Society of America Bulletin.129(9‐10), 1123–1139. https://doi.org/10.1130/B31544.1.
    [Google Scholar]
  28. Kirby, E., & Whipple, K. X. (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54–75. https://doi.org/10.1016/j.jsg.2012.07.009
    [Google Scholar]
  29. Konsoer, K., Zinger, J., & Parker, G. (2013). Bankfull hydraulic geometry of submarine channels created by turbidity currents: Relations between bankfull channel characteristics and formative flow discharge. Journal of Geophysical Research: Earth Surface, 118(1), 216–228. https://doi.org/10.1029/2012JF002422
    [Google Scholar]
  30. Kostic, S., Parker, G., & Marr, J. G. (2002). Role of turbidity currents in setting the foreset slope of clinoforms prograding into standing fresh water. Journal of Sedimentary Research, 72(3), 353–362. https://doi.org/10.1306/081501720353
    [Google Scholar]
  31. Krueger, S. W., & Grant, N. T. (2011).The growth history of toe thrusts of the Niger Delta and the role of pore pressure.In K.McClay, J.Shaw, & J.Suppe (Eds.), Thrust fault‐related folding (Vol. 94, pp. 357–390). AAPG Memoir.
    [Google Scholar]
  32. Kulke, H. (1995). Nigeria. In H.Kulke (Ed.), Regional petroleum geology of the world. Part II: Africa, America, Australia and Antarctica (pp. 143–172). Berlin, Germany: Gebrüder Borntraeger.
    [Google Scholar]
  33. Leduc, A. M., Davies, R. J., Densmore, A. L., & Imber, J. (2012). The lateral strike‐slip domain in gravitational detachment delta systems: A case study of the northwestern margin of the Niger Delta. Bulletin, 96(4), 709–728. https://doi.org/10.1306/09141111035
    [Google Scholar]
  34. Leopold, L. B., & Maddock, T. (1953). The hydraulic geometry of stream channels and some physiographic implications. U.S. Geological Survey Professional Paper, 252, 57. https://doi.org/10.3133/pp252
    [Google Scholar]
  35. Mallarino, G., Beaubouef, R. T., Droxler, A. W., Abreu, V., & Labeyrie, L. (2006). Sea level influence on the nature and timing of a minibasin sedimentary fill (northwestern slope of the Gulf of Mexico). American Association of Petroleum Geologists Bulletin, 90, 1089–1119. https://doi.org/10.1306/02210605058
    [Google Scholar]
  36. Mayall, M., Jones, E., & Casey, M. (2006). Turbidite channel reservoirs—Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23(8), 821–841. https://doi.org/10.1016/j.marpetgeo.2006.08.001
    [Google Scholar]
  37. Mayall, M., Lonergan, L., Bowman, A., James, S., Mills, K., Primmer, T., … Skeene, R. (2010). The response of turbidite slope channels to growth‐induced seabed topography. AAPG Bulletin, 94(7), 1011–1030. https://doi.org/10.1306/01051009117
    [Google Scholar]
  38. McHargue, T., Pyrcz, M. J., Sullivan, M. D., Clark, J. D., Fildani, A., Romans, B. W., … Drinkwater, N. J. (2011). Architecture of turbidite channel systems on the continental slope: Patterns and predictions. Marine and Petroleum Geology, 28(3), 728–743. https://doi.org/10.1016/j.marpetgeo.2010.07.008
    [Google Scholar]
  39. Mitchell, N. C. (2005). Interpreting long‐profiles of canyons in the USA Atlantic continental slope. Marine Geology, 214(1–3), 75–99. https://doi.org/10.1016/j.margeo.2004.09.005
    [Google Scholar]
  40. Mitchell, N. C. (2006). Morphologies of knickpoints in submarine canyons. Geological Society of America Bulletin, 118(5‐6), 589–605. https://doi.org/10.1130/B25772.1
    [Google Scholar]
  41. Morgan, R. (2003). Prospectivity in ultradeep water: The case for petroleum generation and migration within the outer parts of the Niger Delta apron. Geological Society, London, Special Publications, 207(1), 151–164. https://doi.org/10.1144/GSL.SP.2003.207.8
    [Google Scholar]
  42. Morgan, R. (2004). Structural controls on the positioning of submarine channels on the lower slopes of the Niger Delta in R.J. Davies, J. A. Cartwright, S.A. Stewart, M. Lappin, and J.R. Underhill eds., 3D Seismic Technology: Application to the Exploration of Sedimentary Basins. Geological Society, London, Memoirs, 29(1), 45–51. https://doi.org/10.1144/GSL.MEM.2004.029.01.05
    [Google Scholar]
  43. Peakall, J., McCaffrey, W. D., & Kneller, B. C. (2000). A process model for the evolution, morphology, and architecture of sinuous submarine channels. Journal of Sedimentary Research, 70, 434–448. https://doi.org/10.1306/2DC4091C‐0E47‐11D7‐8643000102C1865D
    [Google Scholar]
  44. Peakall, J., & Sumner, E. J. (2015). Submarine channel flow processes and deposits: A process‐product perspective. Geomorphology, 244, 95–120. https://doi.org/10.1016/j.geomorph.2015.03.005
    [Google Scholar]
  45. Picot, M., Droz, L., Marsset, T., Dennielou, B., & Bez, M. (2016). Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture (Late Quaternary Congo Fan). Marine and Petroleum Geology, 72, 423–446. https://doi.org/10.1016/j.marpetgeo.2016.02.004
    [Google Scholar]
  46. Pirmez, C., & Imran, J. (2003). Reconstruction of turbidity currents in Amazon Channel. Marine and Petroleum Geology, 20(6–8), 823–849. https://doi.org/10.1016/j.marpetgeo.2003.03.005
    [Google Scholar]
  47. Pirmez, C., Beaubouef, R. T., Friedmann, S. J., & Mohrig, D. (2000). Equilibrium profile and base level in submarine channels: Examples from late Pleistocene systems and implications for the architecture of deep‐water reservoirs. In P.Weimer, R. M.Slatt, J.Coleman, N. C.Rosen, H.Nelson, A. H.Bouma, … D. T.Lawrence (Eds.), Deep‐water reservoirs of the world: Gulf coast section, society for sedimentary geology (SEPM) foundation 20th Annual Research Conference (pp. 782–805).
    [Google Scholar]
  48. Pizzi, M, Lonergan, L, Whittaker, A. C., & Mayall, M (2020). Growth of a thrust fault array in space and time: an example from the deep‐water Niger Delta. Journal of structural geology, https://doi.org/10.1016/j.jsg.2020.104088
    [Google Scholar]
  49. Posamentier, H. W., & Kolla, V. (2003). Seismic geomorphology and stratigraphy of depositional elements in deep‐water settings. Journal of Sedimentary Research, 73(3), 367–388. https://doi.org/10.1306/111302730367
    [Google Scholar]
  50. Prather, B. E. (2003). Controls on reservoir distribution, architecture and stratigraphic trapping in slope settings. Marine and Petroleum Geology, 20, 529–545. https://doi.org/10.1016/j.marpetgeo.2003.03.009
    [Google Scholar]
  51. Prather, B. E., Booth, J. R., Steffens, G. S., & Craig, P. A. (1998). Classification, lithologic calibration and stratigraphic succession of seismic facies from intraslope basins, deep water Gulf of Mexico, USA. AAPG Bulletin, 82, 701–728.
    [Google Scholar]
  52. Prather, B. E., O'Byrne, C., Pirmez, C., & Sylvester, Z., (2017). Sediment partitioning, continental slopes and base‐of‐slope systems. Basin Research, 29(3), 394–416. http://dx.doi.org/10.1111/bre.12190
    [Google Scholar]
  53. Pratson, L. F., Nittrouer, C. A., Wiberg, P. L., Steckler, M. S., Swenson, J. B., Cacchione, D. A., … Fedele, J. J. (2007). Seascape evolution on clastic continental shelves and slopes. In C. A.Nittrouer, J. A.Austin, M. E.Field, J. H.Kravitz, J. P. M.Syvitski, & P. L.Wiberg (Eds.), Continental margin sedimentation: From sediment transport to sequence stratigraphy. Oxford, UK: Blackwell Publishing Ltd.
    [Google Scholar]
  54. Puig, P., Ogston, A. S., Mullenbach, B. L., Nittrouer, C. A., & Sternberg, R. W. (2003). Shelf‐to‐canyon sediment‐transport processes on the Eel continental margin (northern California). Marine Geology, 193(1), 129–149. https://doi.org/10.1016/S0025‐3227(02)00641‐2
    [Google Scholar]
  55. Rouby, D., Nalpas, T., Jermannaud, P., Robin, C., Guillocheau, F., & Raillard, S. (2011). Gravity driven deformation controlled by the migration of the delta front: The Plio‐Pleistocene of the Eastern Niger Delta. Tectonophysics, 513(1–4), 54–67. https://doi.org/10.1016/j.tecto.2011.09.026
    [Google Scholar]
  56. Schumm, S.A., Dumont, J.F., & Holbrook, J.M. (2002). Active tectonics and alluvial rivers (p. 276). Cambridge, UK: Cambridge University Press.
    [Google Scholar]
  57. Shumaker, L. E., Jobe, Z. R., Johnstone, S. A., Pettinga, L. A., Cai, D., & Moody, J. D. (2018). Controls on submarine channel‐modifying processes identified through morphometric scaling relationships. Geosphere, 14(5), 2171–2187. https://doi.org/10.1130/GES01674.1
    [Google Scholar]
  58. Straub, K. M., Mohrig, D., & Pirmez, C. (2012). Architecture of an aggradational tributary submarine‐channel network on the continental slope offshore Brunei Darussalam. In B. E.Prather, M. E.Deptuck, D.Mohrig, B.Van Hoorn, & R. B.Wynn (Eds.), Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogues. SEPM Society for Sedimentary Geology. https://doi.org/10.2110/pec.12.99
    [Google Scholar]
  59. SumnerE. J., PaullC. K. (2014). Swept away by a turbidity current in Mendocino submarine canyon, California. Geophysical Research Letters, 41, (21), 7611–7618. http://dx.doi.org/10.1002/2014gl061863
    [Google Scholar]
  60. Sylvester, Z., & Covault, J. A. (2016). Development of cutoff‐related knickpoints during early evolution of submarine channels. Geology, 44(10), 835–838. https://doi.org/10.1130/G38397.1
    [Google Scholar]
  61. Talling, P. J., Allin, J., Armitage, D. A., Arnott, R. W. C., Cartigny, M. J. B., Clare, M. A., … Xu, J. P. (2015). Key future directions for research on turbidity currents and their deposits. Journal Sedimentary Research, 85, 153–169. https://doi.org/10.2110/jsr.2015.03
    [Google Scholar]
  62. Talling, P. J., Masson, D. G., Sumner, E. J., & Malgesini, G. (2012). Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7), 1937–2003. https://doi.org/10.1111/j.1365‐3091.2012.01353.x
    [Google Scholar]
  63. Talling, P. J., Paull, C. K., & Piper, D. J. W. (2013). How are subaqueous sediment density flows triggered, what is their internal structure and how does it evolve? Direct observations from monitoring of active flows. Earth‐Science Reviews, 125, 244–287. https://doi.org/10.1016/j.earscirev.2013.07.005
    [Google Scholar]
  64. Toniolo, H., & Cantelli, A. (2007). Experiments on upstream‐migrating submarine knickpoints. Journal of Sedimentary Research, 77(9), 772–783. https://doi.org/10.2110/jsr.2007.067
    [Google Scholar]
  65. Tucker, G. E., & Whipple, K. X. (2002). Topographic outcomes predicted by stream erosion models: Sensitivity analysis and intermodel comparison. Journal of Geophysical Research, 107, 1–16. https://doi.org/10.1029/2000JB000044
    [Google Scholar]
  66. Whipple, K. X., & Tucker, G. E. (2002). Implications of sediment‐flux‐dependent river incision models for landscape evolution. Journal of Geophysical Research, 107, 1–20. https://doi.org/10.1029/2000JB000044
    [Google Scholar]
  67. Whittaker, A. C. (2012). How do landscapes record tectonics and climate?Lithosphere, 4(2), 160–164. https://doi.org/10.1130/RF.L003.1
    [Google Scholar]
  68. WhittakerA. C., CowieP. A., AttalM., TuckerG. E., RobertsG. P. (2007). Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates. Geology, 35, (2), 103. http://dx.doi.org/10.1130/g23106a.1
    [Google Scholar]
  69. Whittaker, A. C, Attal, M., Cowie, P. A, & Tucker, G. E. (2008). Decoding temporal and spatial patterns of fault uplift using transient river long profiles. Geomorphology, 100(3–4), 506–526. https://doi.org/10.1016/j.geomorph.2008.01.018
    [Google Scholar]
  70. WuJ. E., McClayK., FrankowiczE. (2015). Niger delta gravity‐driven deformation above the relict Chain and Charcot oceanic fracture zones, Gulf of Guinea: Insights from analogue models. Marine and Petroleum Geology, 65, 43–62. http://dx.doi.org/10.1016/j.marpetgeo.2015.03.008
    [Google Scholar]
  71. Wynn, R. B., Cronin, B. T., & Peakall, J. (2007). Sinuous deep‐water channels: Genesis, geometry and architecture. Marine and Petroleum Geology, 24(6), 341–387. https://doi.org/10.1016/j.marpetgeo.2007.06.001
    [Google Scholar]
  72. Wynn, R. B., Talling, P. J., Masson, D. G., Le Bas, T. P., Cronin, B. T., & Stevenson, C. J. (2012). The influence of subtle gradient changes on deep‐water gravity flows: A case study from the moroccan turbidite system. In B. E.Prather, M. E.Deptuck, D.Mohrig, B.Van Hoorn, & R. B.Wynn (Eds.) Application of the principles of seismic geomorphology to continental‐slope and base‐of‐slope systems: Case studies from seafloor and near‐seafloor analogues. (Vol. 99, pp. 371–383). SEPM Special Publication, SEPM.
    [Google Scholar]
  73. Xu, J. P. (2010). Normalized velocity profiles of field‐measured turbidity currents. Geology, 38(6), 563–566. https://doi.org/10.1130/G30582.1
    [Google Scholar]
  74. Xu, J. P. (2011). Measuring currents in submarine canyons: Technological and scientific progress in the past 30 years. Geosphere, 7(4), 868–876. https://doi.org/10.1130/GES00640.1
    [Google Scholar]
  75. Zhu, M., Graham, S., Pang, X., & McHargue, T. (2010). Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation, northern South China Sea. Marine and Petroleum Geology, 27(1), 307–319. https://doi.org/10.1016/j.marpetgeo.2009.05.005
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12460
Loading
/content/journals/10.1111/bre.12460
Loading

Data & Media loading...

  • Article Type: Research Article
Keyword(s): sedimentology; structure; tectonic geomorphology; tectonics and sedimentation

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error