1887
Volume 24, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

Over the past ten years we have numerically modelled the properties of the magmatism generated at four of the key areas where the ‘mantle plume–volcanic margin hypothesis’ is expected to be valid: the North Atlantic, South Atlantic, India–Seychelles and Afar. Our model incorporates many of the original assumptions in the classic White and McKenzie model, with pure shear of the lithospheric mantle, passive upwelling and decompressional melting. Our model is however two- rather than one-dimensional, can capture the rift history (extension rate changes and axis jumps) and tracks mantle depletion during melting. In all four of our study areas we require the sub-lithospheric mantle to be 100 – 200°C hotter than ‘normal’, non-volcanic margins to explain the characteristics of the magmatism. In the three passive margin cases we find this excess temperature is limited to a 50 – 100 km thick layer. We require this layer temperature to drop along-strike away from the proposed sites of plume impact at the base of the lithosphere. However, we also find that lithospheric thickness and rift history are as important as temperature for controlling the magmatism. Our work therefore lends support to the hypothesis that the excess magmatism at volcanic margins is due to a thermal anomaly in the asthenosphere, albeit with consideration of extra parameters.

Numerical model description is available at https://doi.org/10.6084/m9.figshare.c.3924505

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2016-101
2017-11-23
2024-04-26
Loading full text...

Full text loading...

References

  1. Anderson, D.L.
    1998. The scales of mantle convection. Tectonophysics, 284, 1–17, https://doi.org/10.1016/s0040-1951(97)00169-8
    [Google Scholar]
  2. Annen, C.
    and Sparks, R.S.J. 2002. Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth and Planetary Science Letters, 203, 937–955, https://doi.org/10.1016/S0012-821x(02)00929-9
    [Google Scholar]
  3. Armitage, J.J., Henstock, T.J., Minshull, T.A.
    and Hopper, J.R. 2008. Modelling the composition of melts formed during continental breakup of the Southeast Greenland margin. Earth and Planetary Science Letters, 269, 248–258, https://doi.org/10.1016/j.epsl.2008.02.024
    [Google Scholar]
  4. and Hopper, J.R. 2009. Lithospheric controls on melt production during continental breakup at slow rates of extension: Application to the North Atlantic. Geochemistry Geophysics Geosystems, 10, https://doi.org/10.1029/2009gc002404
    [Google Scholar]
  5. Armitage, J.J., Collier, J.S.
    and Minshull, T.A. 2010. The importance of rift history for volcanic margin formation. Nature, 465, 913–917, https://doi.org/10.1038/nature09063
    [Google Scholar]
  6. Armitage, J.J., Collier, J.S., Minshull, T.A.
    and Henstock, T.J. 2011. Thin oceanic crust and flood basalts: India-Seychelles breakup. Geochemistry Geophysics Geosystems, 12, https://doi.org/10.1029/2010gc003316
    [Google Scholar]
  7. Armitage, J.J., Ferguson, D.J., Goes, S., Hammond, J.O.S., Calais, E., Rychert, C.A.
    and Harmon, N. 2015. Upper mantle temperature and the onset of extension and break-up in Afar, Africa. Earth and Planetary Science Letters, 418, 78–90, https://doi.org/10.1016/j.epsl.2015.02.039
    [Google Scholar]
  8. Becker, K., Franke, D. et al.
    2014. Asymmetry of high-velocity lower crust on the South Atlantic rifted margins and implications for the interplay of magmatism and tectonics in continental breakup. Solid Earth, 5, 1011–1026, https://doi.org/10.5194/se-5-1011-2014
    [Google Scholar]
  9. Behn, M.D. & Kelemen, P.B.
    2003. Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochemistry Geophysics Geosystems, 4, https://doi.org/10.1029/2002gc000393
    [Google Scholar]
  10. Bown, J.W. & White, R.S.
    1994. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth and Planetary Science Letters, 121, 435–449, https://doi.org/10.1016/0012-821x(94)90082-5
    [Google Scholar]
  11. 1995. Effect of finite extension rate on melt generation at rifted continental margins. Journal of Geophysical Research-Solid Earth, 100, 18011–18029, https://doi.org/10.1029/94jb01478
    [Google Scholar]
  12. Brune, S., Heine, C., Clift, P.D. & Perez-Gussinye, M.
    2017. Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea. Marine and Petroleum Geology, 79, 257–281, https://doi.org/10.1016/j.marpetgeo.2016.10.018
    [Google Scholar]
  13. Buck, W.R.
    1991. Modes of continental lithospheric extension. Journal of Geophysical Research-Solid Earth, 96, 20161–20178, https://doi.org/10.1029/91jb01485
    [Google Scholar]
  14. Burov, E. & Guillou-Frottier, L.
    2005. The plume head–continental lithosphere interaction using a tectonically realistic formulation for the lithosphere. Geophysical Journal International, 161, 469–490, https://doi.org/10.1111/j.1365-246X.2005.02588.x
    [Google Scholar]
  15. Cannat, M., Manatschal, G., Sauter, D. & Peron-Pinvidic, G.
    2009. Assessing the conditions of continental breakup at magma-poor rifted margins: What can we learn from slow spreading mid-ocean ridges?Comptes Rendus Geoscience, 341, 406–427, https://doi.org/10.1016/j.crte.2009.01.005
    [Google Scholar]
  16. Carbotte, S.M., Smith, D.K., Cannat, M. & Klein, E.M.
    2015. Tectonic and magmatic segmentation of the Global Ocean Ridge System: a synthesis of observations. In: Wright, T.J. et al. (eds) Magmatic Rifting and Active Volcanism. Geological Society, London, Special Publications, 420, https://doi.org/10.1144/sp420.5
    [Google Scholar]
  17. Chenin, P., Manatschal, G., Lavier, L.L. & Erratt, D.
    2015. Assessing the impact of orogenic inheritance on the architecture, timing and magmatic budget of the North Atlantic rift system: a mapping approach. Journal of the Geological Society, 172, 711–720, https://doi.org/10.1144/jgs2014-139
    [Google Scholar]
  18. Coffin, M.F. & Eldholm, O.
    1994. Large Igneous Provinces - Crustal structure, dimensions, and external consequences. Reviews of Geophysics, 32, 1–36, https://doi.org/10.1029/93rg02508
    [Google Scholar]
  19. Collier, J.S., Sansom, V., Ishizuka, O., Taylor, R.N., Minshull, T.A. & Whitmarsh, R.B.
    2008. Age of Seychelles-India break-up. Earth and Planetary Science Letters, 272, 264–277, https://doi.org/10.1016/j.epsl.2008.04.045
    [Google Scholar]
  20. Collier, J.S., Minshull, T.A. et al.
    2009. Factors influencing magmatism during continental breakup: New insights from a wide-angle seismic experiment across the conjugate Seychelles-Indian margins. Journal of Geophysical Research-Solid Earth, 114, https://doi.org/10.1029/2008jb005898
    [Google Scholar]
  21. Dalton, C.A., Langmuir, C.H. & Gale, A.
    2014. Geophysical and geochemical evidence for deep temperature variations beneath mid-ocean ridges. Science, 344, 80–83, https://doi.org/10.1126/science.1249466
    [Google Scholar]
  22. Davaille, A. & Jaupart, C.
    1993. Transient high-rayleigh-number thermal-convection with large viscosity variations. Journal of Fluid Mechanics, 253, 141–166, https://doi.org/10.1017/S0022112093001740
    [Google Scholar]
  23. Desissa, M., Johnson, N.E., Whaler, K.A., Hautot, S., Fisseha, S. & Dawes, G.J.K.
    2013. A mantle magma reservoir beneath an incipient mid-ocean ridge in Afar, Ethiopia. Nature Geoscience, 6, 861–865, https://doi.org/10.1038/ngeo1925
    [Google Scholar]
  24. Dore, A.G., Lundin, E.R., Jensen, L.N., Birkeland, O., Eliassen, P.E. & Filcher, C.
    1999. Principal tectonic events in the evolution of the northwest European Atlantic margin. Geological Society, London, Petroleum Geology Conference series, https://doi.org/10.1144/0050041 .
    [Google Scholar]
  25. Ferguson, D.J., Maclennan, J. et al.
    2013. Melting during late-stage rifting in Afar is hot and deep. Nature, 499, 70–73, https://doi.org/10.1038/nature12292
    [Google Scholar]
  26. Fitton, J.G., Saunders, A.D., Larsen, L.M., Hardarson, B.S. & Norry, M.J.
    1998. Volcanic rocks from the southeast Greenland margin at 63°N: composition, petrogenisis, and mantle sources. Proceedings of the Ocean Drilling Program, Scientific Results, 152, 331–350.
    [Google Scholar]
  27. Fjeldskaar, W., Helset, H.M., Johansen, H., Grunnaleite, I. & Horstad, I.
    2008. Thermal modelling of magmatic intrusions in the Gjallar Ridge, Norwegian Sea: implications for vitrinite reflectance and hydrocarbon maturation. Basin Research, 20, 143–159, https://doi.org/10.1111/j.1365-2117.2007.00347.x
    [Google Scholar]
  28. Foulger, G.R., Natland, J.H. & Anderson, D.L.
    2005. A source for Icelandic magmas in remelted Iapetus crust. Journal of Volcanology and Geothermal Research, 141, 23–44, https://doi.org/10.1016/j.jvolgeores.2004.10.006
    [Google Scholar]
  29. Geoffroy, L., Burov, E.B. & Werner, P.
    2015. Volcanic passive margins: another way to break up continents. Scientific Reports, 5, 14828, https://doi.org/10.1038/srep14828
    [Google Scholar]
  30. Goes, S., Armitage, J., Harmon, N., Smith, H. & Huismans, R.
    2012. Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention. Journal of Geophysical Research-Solid Earth, 117, https://doi.org/10.1029/2012jb009637
    [Google Scholar]
  31. Guillou, L. & Jaupart, C.
    1995. On the effect of continents on mantle convection. Journal of Geophysical Research-Solid Earth, 100, 24217–24238, https://doi.org/10.1029/95jb02518
    [Google Scholar]
  32. Hammond, J.O.S., Kendall, J.M., Wookey, J., Stuart, G.W., Keir, D. & Ayele, A.
    2014. Differentiating flow, melt, or fossil seismic anisotropy beneath Ethiopia. Geochemistry Geophysics Geosystems, 15, 1878–1894, https://doi.org/10.1002/2013gc005185
    [Google Scholar]
  33. Haupert, I., Manatschal, G., Decarlis, A. & Unternehr, P.
    2016. Upper-plate magma-poor rifted margins: Stratigraphic architecture and structural evolution. Marine and Petroleum Geology, 69, 241–261, https://doi.org/10.1016/j.marpetgeo.2015.10.020
    [Google Scholar]
  34. Holbrook, W.S., Purdy, G.M., Sheridan, R.E., Glover, L., Talwani, M., Ewing, J. & Hutchinson, D.
    1994a. Seismic structure of the US mid-Atlantic continental-margin. Journal of Geophysical Research-Solid Earth, 99, 17871–17891, https://doi.org/10.1029/94jb00729
    [Google Scholar]
  35. Holbrook, W.S., Reiter, E.C. et al.
    1994b. Deep-structure of the United-States Atlantic continental-margin, offshore South-Carolina, from coincident ocean-bottom and multichannel seismic data. Journal of Geophysical Research-Solid Earth, 99, 9155–9178, https://doi.org/10.1029/93jb01821
    [Google Scholar]
  36. Holford, S.P., Schofield, N., Jackson, C.A.L., Magee, C., Green, P.F. & Duddy, I.R.
    2013. Impacts of igneous intrusions on source and reservoir potential in prospective sedimentary basins along the Western Australian continental margin. West Australian Basins Symposium , 18–21 August, Perth, WA, Proceedings of the Petroleum Exploration Society of Australia.
    [Google Scholar]
  37. Hopper, J.R., Mutter, J.C., Larson, R.L. & Mutter, C.Z.
    1992. Magmatism and rift margin evolution: Evidence from northwest Australia. Geology, 20, 853, https://doi.org/10.1130/0091-7613(1992)020<0853:marmee>2.3.co;2
    [Google Scholar]
  38. Hopper, J.R., Dahl-Jensen, T. et al.
    2003. Structure of the SE Greenland margin from seismic reflection and refraction data: Implications for nascent spreading center subsidence and asymmetric crustal accretion during North Atlantic opening. Journal of Geophysical Research-Solid Earth, 108, https://doi.org/10.1029/2002jb001996
    [Google Scholar]
  39. Ito, G., Lin, J.
    and Gable, C.W. 1996. Dynamics of mantle flow and melting at a ridge-centered hotspot: Iceland and the Mid-Atlantic Ridge. Earth and Planetary Science Letters, 144, 53–74, https://doi.org/10.1016/0012-821x(96)00151-3
    [Google Scholar]
  40. Jagoutz, O., Muntener, O., Manatschal, G., Rubatto, D., Peron-Pinvidic, G., Turrin, B.D.
    and Villa, I.M. 2007. The rift-to-drift transition in the North Atlantic: A stuttering start of the MORB machine?Geology, 35, 1087–1090, https://doi.org/10.1130/g23613a.1
    [Google Scholar]
  41. Kelemen, P.B.
    and Holbrook, W.S. 1995. Origin of thick, high-velocity igneous crust along the US east-coast margin. Journal of Geophysical Research-Solid Earth, 100, 10077–10094, https://doi.org/10.1029/95jb00924
    [Google Scholar]
  42. Korenaga, J.
    2004. Mantle mixing and continental breakup magmatism. Earth and Planetary Science Letters, 218, 463–473, https://doi.org/10.1016/S0012-821x(03)00674-5
    [Google Scholar]
  43. Korenaga, J. & Kelemen, P.B.
    2000. Major element heterogeneity in the mantle source of the North Atlantic igneous province. Earth and Planetary Science Letters, 184, 251–268, https://doi.org/10.1016/s0012-821x(00)00308-3
    [Google Scholar]
  44. Levell, B., Argent, J., Dore, A.G. & Fraser, S.
    2010. Passive margins: overview.In: Vining, B.A. & Pickering, S.C. (eds) Petroleum Geology: From Mature Basins to New Frontiers Proceedings of the 7th Petroleum Geology Conference. Geological Society, London, 7, 823–830, https://doi.org/10.1144/0070823
    [Google Scholar]
  45. Limare, A., Vilella, K. et al.
    2015. Microwave-heating laboratory experiments for planetary mantle convection. Journal of Fluid Mechanics, 777, https://doi.org/10.1017/jfm.2015.347
    [Google Scholar]
  46. McKenzie, D. & O'Nions, R. K.
    1991. Partial melt distributions from inversion of Rare-Earth Element concentrations. Journal of Petrology, 32, 1021–1091.
    [Google Scholar]
  47. Minshull, T.A., Lane, C.I., Collier, J.S. & Whitmarsh, R.B.
    2008. The relationship between rifting and magmatism in the northeastern Arabian Sea. Nature Geoscience, 1, 463–467, https://doi.org/10.1038/ngeo228
    [Google Scholar]
  48. Misra, A.A., Sinha, N. & Mukherjee, S.
    2015. Repeat ridge jumps and microcontinent separation: insights from NE Arabian Sea. Marine and Petroleum Geology, 59, 406–428, https://doi.org/10.1016/j.marpetgeo.2014.08.019
    [Google Scholar]
  49. Muller, R.D., Sdrolias, M., Gaina, C.
    and Roest, W.R. 2008. Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry Geophysics Geosystems, 9, https://doi.org/10.1029/2007gc001743
    [Google Scholar]
  50. Mutter, J.C., Buck, W.R. & Zehnder, C.M.
    1988. Convective partial melting .1. A model for the formation of thick basaltic sequences during the initiation of spreading. Journal of Geophysical Research-Solid Earth and Planets, 93, 1031–1048, https://doi.org/10.1029/Jb093ib02p01031
    [Google Scholar]
  51. Nielsen, T.K. & Hopper, J.R.
    2002. Formation of volcanic rifted margins: Are temperature anomalies required?Geophysical Research Letters, 29, 2022.
    [Google Scholar]
  52. 2004. From rift to drift: Mantle melting during continental breakup. Geochemistry Geophysics Geosystems, 5, https://doi.org/10.1029/2003gc000662
    [Google Scholar]
  53. Pérez-Díaz, L. & Eagles, G.
    2014. Constraining South Atlantic growth with seafloor spreading data. Tectonics, 33, 1848–1873, https://doi.org/10.1002/2014tc003644
    [Google Scholar]
  54. Pérez-Gussinye, M., Araujo, M., Romeiro, M., Andres Martinez, M., Phipps Morgan, J. & Ros, E.
    2016. Modes of extension and oceanization at magma-poor margins: An example from the Brazilian/African margins. AAPG Search and Discovery #30435.
    [Google Scholar]
  55. Petersen, K.D., Armitage, J.J., Nielsen, S.B. & Thybo, H.
    2015. Mantle temperature as a control on the time scale of thermal evolution of extensional basins. Earth and Planetary Science Letters, 409, 61–70, https://doi.org/10.1016/j.epsl.2014.10.043
    [Google Scholar]
  56. Pik, R., Marty, B.
    & Hilton, D.R. 2006. How many mantle plumes in Africa? The geochemical point of view. Chemical Geology, 226, 100–114, https://doi.org/10.1016/j.chemgeo.2005.09.016
    [Google Scholar]
  57. Reed, C.A., Almadani, S. et al.
    2014. Receiver function constraints on crustal seismic velocities and partial melting beneath the Red Sea rift and adjacent regions, Afar Depression. Journal of Geophysical Research-Solid Earth, 119, 2138–2152, https://doi.org/10.1002/2013jb010719
    [Google Scholar]
  58. Reilinger, R. & McClusky, S.
    2011. Nubia-Arabia-Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophysical Journal International, 186, 971–979, https://doi.org/10.1111/j.1365-246X.2011.05133.x
    [Google Scholar]
  59. Reston, T.J.
    2009. The structure, evolution and symmetry of the magma-poor rifted margins of the North and Central Atlantic: A synthesis. Tectonophysics, 468, 6–27, https://doi.org/10.1016/j.tecto.2008.09.002
    [Google Scholar]
  60. Rickers, F., Fichtner, A. & Trampert, J.
    2013. The Iceland-Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: Evidence from full-waveform inversion. Earth and Planetary Science Letters, 367, 39–51, https://doi.org/10.1016/j.epsl.2013.02.022
    [Google Scholar]
  61. Rodriguez Monreal, F., Villar, H.J., Baudino, R., Delpino, D. & Zencich, S.
    2009. Modeling an atypical petroleum system: A case study of hydrocarbon generation, migration and accumulation related to igneous intrusions in the Neuquen Basin, Argentina. Marine and Petroleum Geology, 26, 590–605, https://doi.org/10.1016/j.marpetgeo.2009.01.005
    [Google Scholar]
  62. Rooney, T.O., Hanan, B.B., Graham, D.W., Furman, T., Blichert-Toft, J. & Schilling, J.G.
    2012a. Upper Mantle Pollution during Afar Plume-Continental Rift Interaction. Journal of Petrology, 53, 365–389, https://doi.org/10.1093/petrology/egr065
    [Google Scholar]
  63. Rooney, T.O., Herzberg, C. & Bastow, I.D.
    2012b. Elevated mantle temperature beneath East Africa. Geology, 40, 27–30, https://doi.org/10.1130/g32382.1
    [Google Scholar]
  64. Schiffer, C., Stephenson, R.A., Petersen, K.D., Nielsen, S.B., Jacobsen, B.H., Balling, N. & Macdonald, D.I.M.
    2015. A sub-crustal piercing point for North Atlantic reconstructions and tectonic implications. Geology, 43, 1087–1090, https://doi.org/10.1130/g37245.1
    [Google Scholar]
  65. Scotchman, I.C., Gilchrist, G., Kusznir, N.J., Roberts, A.M. & Fletcher, R.
    2010. The breakup of the South Atlantic Ocean: formation of failed spreading axes and blocks of thinned continental crust in the Santos Basin, Brazil and its consequences for petroleum system development. In: Vining, B.A. & Pickering, S.C. (eds) Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference. Geological Society, London7, 855–866, https://doi.org/10.1144/0070855
    [Google Scholar]
  66. Taposeea, C.A., Armitage, J.J. & Collier, J.S.
    2016. Asthenosphere and lithosphere structure controls on early onset oceanic crust production in the southern South Atlantic. Tectonophysics, https://doi.org/10.1016/j.tecto.2016.06.026
    [Google Scholar]
  67. Trumbull, R.B.
    2014. Causes and consequences of continental breakup in the South Atlantic: lessons learned from the SAMPLE program. EGU General Assembly Conference Abstracts, 16, 1430.
    [Google Scholar]
  68. van Wijk, J.W., Huismans, R.S., ter Voorde, M. & Cloetingh, S.A.P.L.
    2001. Melt generation at volcanic continental margins: no need for a mantle plume?Geophysical Research Letters, 28, 3995–3998.
    [Google Scholar]
  69. White, R. & McKenzie, D.
    1989. Magmatism at rift zones - the generation of volcanic continental margins and flood basalts. Journal of Geophysical Research-Solid Earth and Planets, 94, 7685–7729, https://doi.org/10.1029/Jb094ib06p07685
    [Google Scholar]
  70. White, N., Thompson, M.
    and Barwise, T. 2003. Understanding the thermal evolution of deep-water continental margins. Nature, 426, 334–343, https://doi.org/10.1038/nature02133
    [Google Scholar]
  71. White, R.S., Smith, L.K. et al.
    2008. Lower-crustal intrusion on the North Atlantic continental margin. Nature, 452, 460–464, https://doi.org/10.1038/nature06687
    [Google Scholar]
  72. White, R.S., Eccles, J.D. & Roberts, A.W.
    2010. Constraints on volcanism, igneous intrusion and stretching on the Rockall–Faroe continental margin. In: Vining, B.A. & Pickering, S.C. (eds) Petroleum Geology: From Mature Basins to New Frontiers – Proceedings of the 7th Petroleum Geology Conference. Geological Society, London, 7, 831–842, https://doi.org/10.1144/0070831
    [Google Scholar]
  73. Whitmarsh, R.B., Manatschal, G. & Minshull, T.A.
    2001. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 413, 150–154, https://doi.org/10.1038/35093085
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2016-101
Loading
/content/journals/10.1144/petgeo2016-101
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error