1887
Volume 26, Issue 3
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

An efficient, numerical local upscaling technique for estimating elastic geomechanical properties in heterogeneous continua is proposed. The upscaled anisotropic elastic properties are solved locally with various boundary conditions and reproduce the anisotropic geomechanical response of fine-scale simulations of sand–shale sequence models with horizontal and inclined shale bedding planes. The algorithm is automated in a parallel program and can be used to determine optimum upscaling ratios in different regions of the reservoir. The successful application of the proposed upscaling method in a field-scale coupled reservoir–geomechanics simulation demonstrates an improvement in overall computational efficiency while maintaining accuracy in the geomechanical response and reservoir performance.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2018-159
2019-07-19
2024-04-26
Loading full text...

Full text loading...

References

  1. Backus, G.
    1962. Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67, 4427–4440, https://doi.org/10.1029/JZ067i011p04427
    [Google Scholar]
  2. Berryman, J.
    2011. Mechanics of layered anisotropic poroelastic media with applications to effective stress for fluid permeability. International Journal of Engineering Science, 49, 122–139, https://doi.org/10.1016/j.ijengsci.2010.06.027
    [Google Scholar]
  3. Birrell, G.
    2001. Heat transfer ahead of a SAGD steam chamber: a study of thermocouple data from Phase B of the Underground Test Facility (Dover Project). Paper 2001-088 presented at theCanadian International Petroleum Conference, 12–14 June 2001, Calgary, Canada.
    [Google Scholar]
  4. Budiansky, B.
    1965. On the elastic moduli of some heterogeneous materials. Journal of the Mechanics and Physics of Solids, 13, 223–227, https://doi.org/10.1016/0022-5096(65)90011-6
    [Google Scholar]
  5. Chalon, F., Mainguy, M., Longuemare, P. & Lemonnier, P.
    2004. Upscaling of elastic properties for large scale geomechanical simulations. International Journal for Numerical and Analytical Methods in Geomechanics, 28, 1105–1119, https://doi.org/10.1002/nag.379
    [Google Scholar]
  6. Christensen, R. & Lo, K.
    1979. Solutions for effective and shear properties in three phase and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315–330, https://doi.org/10.1016/0022-5096(79)90032-2
    [Google Scholar]
  7. Collins, P.
    2007. Geomechanical effects on the SAGD process. SPE Reservoir Evaluation & Engineering, 10, 1–3, https://doi.org/10.2118/97905-PA
    [Google Scholar]
  8. Couples, G., Lewis, H., Pickup, G.E., Ma, J., Rouainia, M., Bicanic, N. & Pearce, C.J.
    2003. Upscaling fluid-flow and geomechanical properties in coupled matrix + fractures + fluids systems. Paper SPE-79696 presented at theSPE Reservoir Simulation Symposium, 3–5 February 2003, Houston, Texas, USA.
    [Google Scholar]
  9. Cui, Y.F., Chan, D. & Nouri, A.
    2017. Coupling of solid deformation and pore pressure for undrained deformation – a discrete element method approach. International Journal for Numerical and Analytical Methods in Geomechanics, 41, 1943–1961, https://doi.org/10.1002/nag.2708
    [Google Scholar]
  10. Deutsch, C.
    1989. Calculating effective absolute permeability in sandstone/shale sequences. SPE Formation Evaluation Journal, 4, 343–348, https://doi.org/10.2118/17264-PA
    [Google Scholar]
  11. Durlofsky, L.
    1991. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media. Water Resources Research, 27, 669–708, https://doi.org/10.1029/91WR00107
    [Google Scholar]
  12. Eshelby, J.
    1957. The determination of the elastic field of an ellipsoidal inclusion and related problems. Mathematical, Physical and Engineering Sciences, 241, 376–396, https://doi.org/10.1098/rspa.1957.0133
    [Google Scholar]
  13. Gerrard, C.M.
    1982. Equivalent elastic moduli of a rock mass consisting of orthorhombic layers. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 19, 9–14, https://doi.org/10.1016/0148-9062(82)90705-7
    [Google Scholar]
  14. Goodarzi, M., Rouainia, M. & Aplin, A.
    2016. Numerical evaluation of mean-field homogenisation methods for predicting shale elastic response. Computational Geosciences, 20, 1109–1122, https://doi.org/10.1007/s10596-016-9579-y
    [Google Scholar]
  15. Hashin, Z. & Shtrikman, S.
    1962. On some variational principles in anisotropic and nonhomogeneous elasticity. Journal of the Mechanics and Physics of Solids, 10, 335–342, https://doi.org/10.1016/0022-5096(62)90004-2
    [Google Scholar]
  16. 1963. A variational approach to the theory of the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids, 11, 127–140, https://doi.org/10.1016/0022-5096(63)90060-7
    [Google Scholar]
  17. Hill, R.
    1951. The elastic behavior of a crystalline aggregate. Proceedings of the Physical Society: Section A, 65, 349–354, https://doi.org/10.1088/0370-1298/65/5/307
    [Google Scholar]
  18. 1965. A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222, https://doi.org/10.1016/0022-5096(65)90010-4
    [Google Scholar]
  19. Ita, J. & Malekzadeh, F.
    2015. A true poroelastic up and downscaling scheme for multi-scale coupled simulation. Paper SPE-173253 presented at theSPE Reservoir Simulation Symposium, 23–55 February 2015, Houston, Texas, USA.
    [Google Scholar]
  20. Ito, Y., Ichikawa, M. & Hirata, T.
    2000. The growth of the steam chamber during the early period of the UTF Phase B and Hangingstone Phase I projects. Paper 2000-05 presented at theCanadian International Petroleum Conference, 4–8 June 2000, Calgary, Canada.
    [Google Scholar]
  21. Khajeh, M., Chalaturnyk, R. & Boisvert, J.
    2012. A numerical local upscaling approach for elastic rock mechanical properties: dealing with heterogeneity. Paper presented at the46th US Rock Mechanics/Geomechanics Symposium, 24–27 June 2012, Chicago, Illinois, USA.
    [Google Scholar]
  22. Kim, J., Tchelepi, H. & Juanes, R.
    2011. Stability, accuracy, and efficiency of sequential methods for coupled flow and geomechanics. Computer Methods in Applied Mechanics and Engineering, 200, 2094–2116, https://doi.org/10.1016/j.cma.2011.02.011
    [Google Scholar]
  23. Mori, T. & Tanaka, K.
    1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21, 571–574, https://doi.org/10.1016/0001-6160(73)90064-3
    [Google Scholar]
  24. Oldakowski, K.
    1994. Stress induced permeability changes of Athabasca oil sands. Master's thesis, University of Alberta, Edmonton, Alberta, Canada.
    [Google Scholar]
  25. Pickup, G., Ringrose, P., Jensen, J. & Sorbie, K.
    1994. Permeability tensors for sedimentary structures. Mathematical Geoscience, 26, 227–250, https://doi.org/10.1007/BF02082765
    [Google Scholar]
  26. Reuss, A.
    1929. Berechnung der fliessgrenzen von mischkristallen auf grund der plastizitätsbedingung für einkristalle. Journal of Applied Mathematics and Mechanics, 9, 49–58, https://doi.org/10.1002/zamm.19290090104
    [Google Scholar]
  27. Rijpsma, G. & Zijl, W.
    1998. Upscaling of Hooke's law for imperfectly layered rocks. Mathematical Geosciences, 30, 943–969, https://doi.org/10.1023/A:1021729508736
    [Google Scholar]
  28. Salamon, M.
    1968. Elastic moduli of a stratified rock mass. Journal of Rock Mechanics and Mining Sciences, 5, 519–527, https://doi.org/10.1016/0148-9062(68)90039-9
    [Google Scholar]
  29. Settari, A., Al-Ruwaili, K. & Sen, V.
    2013. Upscaling of geomechanics in heterogeneous compacting reservoirs. Paper SPE-163641 presented at theSPE Reservoir Simulation Symposium, 18–20 February 2013, The Woodlands, Texas, USA.
    [Google Scholar]
  30. Suncor MacKay River Project
    . 2017. AER Performance Presentation. Reporting Period: September 1, 2016 to August 31, 2017. Suncor Energy, Calgary, Canada.
    [Google Scholar]
  31. Thomas, R., Smith, D., Wood, J., Visser, J., Calverley-Range, E. & Koster, E.
    1987. Inclined heterolithic stratification – terminology, description, interpretation and significance. Sedimentary Geology, 53, 123–179, https://doi.org/10.1016/S0037-0738(87)80006-4
    [Google Scholar]
  32. Tortike, W. & Farouq, A.
    1991. Prediction of oil sand failure due to steam-induced stresses. Journal of Canadian Petroleum Technology, 30, 87–96, https://doi.org/10.2118/91-01-08
    [Google Scholar]
  33. Touhidi-Baghini, A.
    1998. Absolute permeability of McMurray Formation oil sands at low confining stresses. PhD thesis, University of Alberta, Edmonton, Alberta, Canada.
    [Google Scholar]
  34. Tran, D., Nghiem, L. & Buchanan, L.
    2005. An overview of iterative coupling between geomechanical deformation and reservoir flow. Paper SPE-97879 presented at the2005 SPE International Thermal Operations and Heavy Oil Symposium, 1–3 November 2005, Calgary, Alberta, Canada.
    [Google Scholar]
  35. Voigt, W.
    1889. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Wiedmanns Annalen der Physik and Chemie, 38, 573–587, https://doi.org/10.1002/andp.18892741206
    [Google Scholar]
  36. Wetzel, M., Thomas, K. & Michael, K.
    2017. Predicting macroscopic elastic rock properties requires detailed information on microstructure. Energy Procedia, 125, 561–570, https://doi.org/10.1016/j.egypro.2017.08.195
    [Google Scholar]
  37. Willis, M.
    2013. Upscaling anisotropic geomechanical properties using Backus averaging and petrophysical clusters in the Vaca Muerta Formation. Master's thesis, Colorado School of Mines, Golden, Colorado, USA.
    [Google Scholar]
  38. Withers, P., Stobb, W. & Pedersen, O.
    1989. The application of the Eshelby method of internal stress determination to short fiber metal matrix composites. Acta Metallurgica, 37, 3061–3084, https://doi.org/10.1016/0001-6160(89)90341-6
    [Google Scholar]
  39. Yang, D., Moridis, G.J. & Blasingame, T.A.
    2013. Numerical upscaling of coupled flow and geomechanics in highly heterogeneous porous media. Paper presented at theUnconventional Resources Technology Conference, 12–14 August 2013, Denver, Colorado, USA.
    [Google Scholar]
  40. Zhang, H. & Fu, Z.
    2010. Coupling upscaling finitely element method for consolidation analysis of heterogeneous saturated porous media. Advances in Water Resources, 33, 34–47, https://doi.org/10.1016/j.advwatres.2009.10.005
    [Google Scholar]
  41. Zhang, B. & Okuno, R.
    2015. Modeling of capacitance flow behavior in EOS compositional simulation. Journal of Petroleum Science and Engineering, 131, 96–113, https://doi.org/10.1016/j.petrol.2015.04.014
    [Google Scholar]
  42. Zijl, W., Hendriks, M. & Hart, M.
    2002. Numerical homogenization of the rigidity tensor in Hooke's law using the node-based finite element method. Mathematical Geosciences, 34, 291–322, https://doi.org/10.1023/A:1014894923280
    [Google Scholar]
  43. Zohdi, T
    . & Wriggers, P. 2008. An Introduction to Computational Micromechanics. Corrected 2nd edn. Lecture Notes in Applied and Computational Mechanics, 20.Springer, Berlin
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2018-159
Loading
/content/journals/10.1144/petgeo2018-159
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error