1887
Volume 27, Issue 4
  • ISSN: 1354-0793
  • E-ISSN:

Abstract

We use 3D seismic reflection data from the Levant margin, offshore Lebanon to investigate the structural evolution of the Messinian evaporite sequence, and how intra-salt structure and strain varies within a thick salt sheet during early-stage salt tectonics. Intra-Messinian reflectivity reveals lithological heterogeneity within the otherwise halite-dominated sequence. This leads to rheological heterogeneity, with the different mechanical properties of the various units controlling strain accommodation within the deforming salt sheet. We assess the distribution and orientation of structures, and show how intra-salt strain varies both laterally and vertically along the margin. We argue that units appearing weakly strained in seismic data may in fact accommodate considerable subseismic or cryptic strain. We also discuss how the intra-salt stress state varies through time and space in response to the gravitational forces driving deformation. We conclude that efficient drilling through thick, heterogeneous salt requires a holistic understanding of the mechanical and kinematic development of the salt and its overburden. This will also enable us to build better velocity models that account for intra-salt lithological and structural complexity in order to accurately image sub-salt geological structures.

Loading

Article metrics loading...

/content/journals/10.1144/petgeo2020-072
2021-06-02
2024-04-27
Loading full text...

Full text loading...

References

  1. Aal, A.A., El Barkooky, A., Gerrits, M., Meyer, H., Schwander, M. and Zaki, H
    . 2000. Tectonic evolution of the Eastern Mediterranean Basin and its significance for hydrocarbon prospectivity in the ultradeepwater of the Nile Delta. The Leading Edge, 19, 1086–1102, https://doi.org/10.1190/1.1438485
    [Google Scholar]
  2. Albertz, M. and Ings, S.J
    . 2012. Some consequences of mechanical stratification in basin-scale numerical models of passive-margin salt tectonics. Geological Society, London, Special Publications , 363, 303–330, https://doi.org/10.1144/SP363.14
    [Google Scholar]
  3. Allen, H., Jackson, C.A.-L. and Fraser, A.J
    . 2016. Gravity-driven deformation of a youthful saline giant: the interplay between gliding and spreading in the Messinian basins of the Eastern Mediterranean. Petroleum Geoscience, 22, 340–356, https://doi.org/10.1144/petgeo2016-034
    [Google Scholar]
  4. Balk, R
    . 1949. Structure of Grand Saline salt dome. AAPG Bulletin, 33, 1791–1829.
    [Google Scholar]
  5. Ben-Avraham, Z
    . 1978. The structure and tectonic setting of the Levant continental margin, eastern Mediterranean. Tectonophysics, 46, 313–331, https://doi.org/10.1016/0040-1951(78)90210-X
    [Google Scholar]
  6. Bertoni, C. and Cartwright, J.A
    . 2006. Controls on the basinwide architecture of late Miocene (Messinian) evaporites on the Levant margin (Eastern Mediterranean). Sedimentary Geology, 188, 93–114, https://doi.org/10.1016/j.sedgeo.2006.03.019
    [Google Scholar]
  7. . 2007. Major erosion at the end of the Messinian Salinity Crisis: evidence from the Levant Basin, Eastern Mediterranean. Basin Research, 19, 1–18, https://doi.org/10.1111/j.1365-2117.2006.00309.x
    [Google Scholar]
  8. Brown, A.R
    . 2011. Interpretation of Three-Dimensional Seismic Data. AAPG Memoirs, 42/SEG Investigations in Geophysics, 9.
    [Google Scholar]
  9. Brun, J.P. and Mauduit, T.P.O
    . 2009. Salt rollers: Structure and kinematics from analogue modelling. Marine and Petroleum Geology, 26, 249–258, https://doi.org/10.1016/j.marpetgeo.2008.02.002
    [Google Scholar]
  10. Burberry, C.M
    . 2015. Spatial and temporal variation in penetrative strain during compression: Insights from analog models. Lithosphere, 7, 611–624, https://doi.org/10.1130/L454.1
    [Google Scholar]
  11. Burliga, S., Krzywiec, P., Dąbroś, K., Przybyło, J., Włodarczyk, E., Źróbek, M. and Słotwiński, M.
    2018. Salt tectonics in front of the Outer Carpathian thrust wedge in the Wieliczka area (S Poland) and its exposure in the underground salt mine. Geology, Geophysics & Environment, 44, 71–90, https://doi.org/10.7494/geol.2018.44.1.71
    [Google Scholar]
  12. Butler, R.W.H. and Paton, D.A
    . 2010. Evaluating lateral compaction in deepwater fold and thrust belts: How much are we missing from ‘nature's sandbox’. GSA Today, 20, 4–10, https://doi.org/10.1130/GSATG77A.1
    [Google Scholar]
  13. Butler, R.W.H., Maniscalco, R., Sturiale, G. and Grasso, M
    . 2015. Stratigraphic variations control deformation patterns in evaporite basins: Messinian examples, onshore and offshore Sicily (Italy). Journal of the Geological Society, London, 172, 113–124, https://doi.org/10.1144/jgs2014-024
    [Google Scholar]
  14. Camerlenghi, A., Del Ben, A. et al.
    2020. Seismic markers of the Messinian salinity crisis in the deep Ionian Basin. Basin Research, 32, 716–738, https://doi.org/10.1111/bre.12392
    [Google Scholar]
  15. Cartwright, J., Jackson, M.P.A., Dooley, T.P. and Higgins, S.
    2012. Strain partitioning in gravity-driven shortening of a thick, multilayered evaporite sequence. Geological Society, London, Special Publications , 363, 449–470, https://doi.org/10.1144/SP363.21
    [Google Scholar]
  16. Cartwright, J., Kirkham, C., Bertoni, C., Hodgson, N. and Rodriguez, K
    . 2018. Direct calibration of salt sheet kinematics during gravity-driven deformation. Geology, 46, 623–626, https://doi.org/10.1130/G40219.1
    [Google Scholar]
  17. Cartwright, J.A. and Jackson, M.P.A
    . 2008. Initiation of gravitational collapse of an evaporite basin margin: The Messinian saline giant, Levant Basin, eastern Mediterranean. Geological Society of America Bulletin, 120, 399–413, https://doi.org/10.1130/B26081X.1
    [Google Scholar]
  18. Coleman, A.J., Jackson, C.A.-L. and Duffy, O.B
    . 2017. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates. Journal of Structural Geology, 102, 208–225, https://doi.org/10.1016/j.jsg.2017.08.006
    [Google Scholar]
  19. Couzens-Schultz, B.A., Vendeville, B.C. and Wiltschko, D.V
    . 2003. Duplex style and triangle zone formation: insights from physical modeling. Journal of Structural Geology, 25, 1623–1644, https://doi.org/10.1016/S0191-8141(03)00004-X
    [Google Scholar]
  20. Davy, P., Hansen, A., Bonnet, E. and Zhang, S.Z.
    1995. Localization and fault growth in layered brittle‐ductile systems: Implications for deformations of the continental lithosphere. Journal of Geophysical Research: Solid Earth, 100, 6281–6294, https://doi.org/10.1029/94JB02983
    [Google Scholar]
  21. Dooley, T.P., Hudec, M.R., Carruthers, D., Jackson, M.P.A. and Luo, G
    . 2017. The effects of base-salt relief on salt flow and suprasalt deformation patterns – Part 1: Flow across simple steps in the base of salt. Interpretation, 5, SD1–SD23, https://doi.org/10.1190/INT-2016-0087.1
    [Google Scholar]
  22. Elfassi, Y., Gvirtzman, Z., Katz, O. and Aharonov, E
    . 2019. Chronology of post-Messinian faulting along the Levant continental margin and its implications for salt tectonics. Marine and Petroleum Geology, 109, 574–588, https://doi.org/10.1016/j.marpetgeo.2019.05.032
    [Google Scholar]
  23. Esestime, P., Hewitt, A. and Hodgson, N
    . 2016. Zohr – A newborn carbonate play in the Levantine Basin, East-Mediterranean. First Break, 34, 87–93, https://doi.org/10.3997/1365-2397.34.2.83912
    [Google Scholar]
  24. Feng, Y.E., Yankelzon, A., Steinberg, J. and Reshef, M
    . 2016. Lithology and characteristics of the Messinian evaporite sequence of the deep Levant Basin, eastern Mediterranean. Marine Geology, 376, 118–131, https://doi.org/10.1016/j.margeo.2016.04.004
    [Google Scholar]
  25. Feng, Y.E., Steinberg, J. and Reshef, M
    . 2017. Intra-salt deformation: Implications for the evolution of the Messinian evaporites in the Levant Basin, eastern Mediterranean. Marine and Petroleum Geology, 88, 251–267, https://doi.org/10.1016/j.marpetgeo.2017.08.027
    [Google Scholar]
  26. Fiduk, J.C. and Rowan, M.G
    . 2012. Analysis of folding and deformation within layered evaporites in Blocks BM-S-8 &-9, Santos Basin, Brazil. Geological Society, London, Special Publications , 363, 471–487, https://doi.org/10.1144/SP363.22
    [Google Scholar]
  27. Fossen, H.
    2016. Structural Geology. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  28. Gautier, F., Clauzon, G., Suc, J.P., Cravatte, J. and Violanti, D
    . 1994. Age and duration of the Messinian salinity crisis. Comptes rendus de l'Académie des Sciences, Paris (IIA), 318, 1103–1109.
    [Google Scholar]
  29. Ghalayini, R., Daniel, J.M., Homberg, C., Nader, F.H. and Comstock, J.E
    . 2014. Impact of Cenozoic strike-slip tectonics on the evolution of the northern Levant Basin (offshore Lebanon). Tectonics, 33, 2121–2142, https://doi.org/10.1002/2014TC003574
    [Google Scholar]
  30. Ghalayini, R., Homberg, C., Daniel, J.M. and Nader, F.H
    . 2017. Growth of layer-bound normal faults under a regional anisotropic stress field. Geological Society, London, Special Publications , 439, 57–78, https://doi.org/10.1144/SP439.13
    [Google Scholar]
  31. Gradmann, S. and Beaumont, C
    . 2012. Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 2. Layered sediment models and application to the northwestern Gulf of Mexico. Tectonics, 31, TC4011, https://doi.org/10.1029/2011TC003035
    [Google Scholar]
  32. Gvirtzman, Z., Reshef, M., Buch-Leviatan, O. and Ben-Avraham, Z
    . 2013. Intense salt deformation in the Levant Basin in the middle of the Messinian salinity crisis. Earth and Planetary Science Letters, 379, 108–119, https://doi.org/10.1016/j.epsl.2013.07.018
    [Google Scholar]
  33. Gvirtzman, Z., Manzi, V. et al.
    2017. Intra-Messinian truncation surface in the Levant Basin explained by subaqueous dissolution. Geology, 45, 915–918, https://doi.org/10.1130/G39113.1
    [Google Scholar]
  34. Hall, J., Calon, T.J., Aksu, A.E. and Meade, S.R
    . 2005. Structural evolution of the Latakia Ridge and Cyprus Basin at the front of the Cyprus Arc, eastern Mediterranean Sea. Marine Geology, 221, 261–297, https://doi.org/10.1016/j.margeo.2005.03.007
    [Google Scholar]
  35. Hawie, N., Gorini, C., Deschamps, R., Nader, F.H., Montadert, L., Granjeon, D. and Baudin, F
    . 2013. Tectono-stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Marine and Petroleum Geology, 48, 392–410, https://doi.org/10.1016/j.marpetgeo.2013.08.004
    [Google Scholar]
  36. Hodgson, N
    . 2012. The Miocene hydrocarbon play in southern Lebanon. First Break, 30, https://doi.org/10.3997/1365-2397.30.12.65622
    [Google Scholar]
  37. Hoy, R. B., Foose, R.M. and O'Neill, B.J
    . 1962. Structure of Winnfield salt diapir. AAPG Bulletin, 46, 1444–1459.
    [Google Scholar]
  38. Hudec, M.R. and Jackson, M.P
    . 2007. Terra infirma: Understanding salt tectonics. Earth-Science Reviews, 82, 1–28, https://doi.org/10.1016/j.earscirev.2007.01.001
    [Google Scholar]
  39. Jackson, C.A.-L., Jackson, M.P., Hudec, M.R. and Rodriguez, C.R
    . 2015. Enigmatic structures within salt walls of the Santos Basin – Part 1: Geometry and kinematics from 3D seismic reflection and well data. Journal of Structural Geology, 75, 135–162, https://doi.org/10.1016/j.jsg.2015.01.010
    [Google Scholar]
  40. Jackson, M.P.A.
    1995. Retrospective salt tectonics. AAPG Memoirs , 65, 1–28.
    [Google Scholar]
  41. Jackson, M.P.A. and Hudec, M.R
    . 2005. Stratigraphic record of translation down ramps in a passive-margin salt detachment. Journal of Structural Geology, 27, 889–911, https://doi.org/10.1016/j.jsg.2005.01.010
    [Google Scholar]
  42. Jackson, M.P.A. and Hudec, M.R.
    2017. Salt Tectonics: Principles and Practice. Cambridge University Press, Cambridge, UK.
    [Google Scholar]
  43. Jackson, M.P.A., Cornelius, R.R., Craig, C.H., Gansser, A., Stocklin, J. and Talbot, C.J
    . 1990. Salt Diapirs of the Great Kavir. Geological Society of America Memoirs, 177.
    [Google Scholar]
  44. Jackson, M.P.A., Vendeville, B.C. and Schultz-Ela, D.D
    . 1994. Structural dynamics of salt systems. Annual Review of Earth and Planetary Sciences, 22, 93–117, https://doi.org/10.1146/annurev.ea.22.050194.000521
    [Google Scholar]
  45. Johnson, A.M. and Fletcher, R.C.
    1994. Folding of Viscous Layers: Mechanical Analysis and Interpretation of Structures in Deformed Rock. Columbia University Press, New York.
    [Google Scholar]
  46. Kartveit, K.H., Omosanya, K.O., Johansen, S.E., Eruteya, O.E., Reshef, M. and Waldmann, N.D
    . 2018. Multiphase structural evolution and geodynamic implications of Messinian salt-related structures, Levant Basin, offshore Israel. Tectonics, 37, 1210–1230, https://doi.org/10.1029/2017TC004794
    [Google Scholar]
  47. Kirkham, C., Cartwright, J., Bertoni, C., Rodriguez, K. and Hodgson, N
    . 2019. 3D kinematics of a thick salt layer during gravity-driven deformation. Marine and Petroleum Geology, 110, 434–449, https://doi.org/10.1016/j.marpetgeo.2019.07.036
    [Google Scholar]
  48. Kirkham, C., Bertoni, C., Cartwright, J., Lensky, N.G., Sirota, I., Rodriguez, K. and Hodgson, N
    . 2020. The demise of a ‘salt giant'driven by uplift and thermal dissolution. Earth and Planetary Science Letters, 531, 115933, https://doi.org/10.1016/j.epsl.2019.115933
    [Google Scholar]
  49. Kupfer, D.H
    . 1962. Structure of Morton salt company mine, Weeks Island salt dome. AAPG Bulletin, 46, 1460–1467.
    [Google Scholar]
  50. Lofi, J., Déverchère, J. et al.
    2011. Seismic Atlas of the Messinian Salinity Crisis Markers in the Mediterranean and Black Seas. Mémoires de la Société Géologique de France, 179.
    [Google Scholar]
  51. Meilijson, A., Hilgen, F. et al.
    2019. Chronology with a pinch of salt: Integrated stratigraphy of Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite deposition during Atlantic connectivity. Earth-Science Reviews, 194, 374–398, https://doi.org/10.1016/j.earscirev.2019.05.011
    [Google Scholar]
  52. Miralles, L., Sans, M., Gali, S. and Santanach, P
    . 2001. 3-D rock salt fabrics in a shear zone (Súria Anticline, South-Pyrenees). Journal of Structural Geology, 23, 675–691, https://doi.org/10.1016/S0191-8141(00)00138-3
    [Google Scholar]
  53. Nader, F.H., Inati, L., Ghalayini, R., Hawie, N. and Daher, S.B
    . 2018. Key geological characteristics of the Saida-Tyr Platform along the eastern margin of the Levant Basin, offshore Lebanon: implications for hydrocarbon exploration. Oil & Gas Science and Technology–Revue d'IFP Energies Nouvelles, 73, 50, https://doi.org/10.2516/ogst/2018045
    [Google Scholar]
  54. Netzeband, G.L., Hübscher, C.P. and Gajewski, D.
    2006. The structural evolution of the Messinian evaporites in the Levantine Basin. Marine Geology, 230, 249–273, https://doi.org/10.1016/j.margeo.2006.05.004
    [Google Scholar]
  55. Peel, F.J
    . 2014. The engines of gravity-driven movement on passive margins: Quantifying the relative contribution of spreading vs. gravity sliding mechanisms. Tectonophysics, 633, 126–142, https://doi.org/10.1016/j.tecto.2014.06.023
    [Google Scholar]
  56. Pichel, L.M., Peel, F., Jackson, C.A. and Huuse, M
    . 2018. Geometry and kinematics of salt-detached ramp syncline basins. Journal of Structural Geology, 115, 208–230, https://doi.org/10.1016/j.jsg.2018.07.016
    [Google Scholar]
  57. Quirk, D.G., Schødt, N., Lassen, B., Ings, S.J., Hsu, D., Hirsch, K.K. and Von Nicolai, C
    . 2012. Salt tectonics on passive margins: examples from Santos, Campos and Kwanza basins. Geological Society, London, Special Publications , 363, 207–244, https://doi.org/10.1144/SP363.10
    [Google Scholar]
  58. Raith, A.F., Strozyk, F., Visser, J. and Urai, J.L
    . 2016. Evolution of rheologically heterogeneous salt structures: a case study from the NE Netherlands. Solid Earth, 7, 67, https://doi.org/10.5194/se-7-67-2016
    [Google Scholar]
  59. Ramberg, H
    . 1962. Contact strain and folding instability of a multilayered body under compression. Geologische Rundschau, 51, 405–439, https://doi.org/10.1007/BF01820010
    [Google Scholar]
  60. Reiche, S., Hübscher, C. and Beitz, M
    . 2014. Fault-controlled evaporite deformation in the Levant Basin, Eastern Mediterranean. Marine Geology, 354, 53–68, https://doi.org/10.1016/j.margeo.2014.05.002
    [Google Scholar]
  61. Roveri, M., Flecker, R. et al.
    2014. The Messinian salinity crisis: Past and future of a great challenge for marine sciences. Marine Geology, 352, 25–58, https://doi.org/10.1016/j.margeo.2014.02.002
    [Google Scholar]
  62. Rowan, M.G., Urai, J.L., Fiduk, J.C. and Kukla, P.A
    . 2019. Deformation of intrasalt competent layers in different modes of salt tectonics. Solid Earth, 10, 987–1013, https://doi.org/10.5194/se-10-987-2019
    [Google Scholar]
  63. Ryan, W.B.F
    . 2009. Decoding the Mediterranean salinity crisis. Sedimentology, 56, 95–136, https://doi.org/10.1111/j.1365-3091.2008.01031.x
    [Google Scholar]
  64. Schleder, Z., Urai, J.L., Nollet, S. and Hilgers, C
    . 2008. Solution–precipitation creep and fluid flow in halite: a case study from the Zechstein (Z1) rocksalt from Neuhof salt mine (Germany). Geologisches Rundschau, 97, 1045–1056, https://doi.org/10.1007/s00531-007-0275-y
    [Google Scholar]
  65. Schmalholz, S.M. and Mancktelow, N.S
    . 2016. Folding and necking across the scales: a review of theoretical and experimental results and their applications. Solid Earth, 7, 1417–1465, https://doi.org/10.5194/se-7-1417-2016
    [Google Scholar]
  66. Schmid, D.W. and Podladchikov, Y.Y
    . 2006. Fold amplification rates and dominant wavelength selection in multilayer stacks. Philosophical Magazine, 86, 3409–3423, https://doi.org/10.1080/14786430500380175
    [Google Scholar]
  67. Schueller, S. and Davy, P
    . 2008. Gravity influenced brittle-ductile deformation and growth faulting in the lithosphere during collision: Results from laboratory experiments. Journal of Geophysical Research: Solid Earth, 113, B12404, https://doi.org/10.1029/2007JB005560
    [Google Scholar]
  68. Schultz-Ela, D.D
    . 2001. Excursus on gravity gliding and gravity spreading. Journal of Structural Geology, 23, 725–731, https://doi.org/10.1016/S0191-8141(01)00004-9
    [Google Scholar]
  69. Schultz-Ela, D.D. and Walsh, P
    . 2002. Modeling of grabens extending above evaporites in Canyonlands National Park, Utah. Journal of Structural Geology, 24, 247–275, https://doi.org/10.1016/S0191-8141(01)00066-9
    [Google Scholar]
  70. Steventon, M.J., Jackson, C.A.L., Hodgson, D.M. and Johnson, H.D
    . 2019. Strain analysis of a seismically imaged mass-transport complex, offshore Uruguay. Basin Research, 31, 600–620, https://doi.org/10.1111/bre.12337
    [Google Scholar]
  71. Strozyk, F., Van Gent, H., Urai, J.L. and Kukla, P.A
    . 2012. 3D seismic study of complex intra-salt deformation: An example from the Upper Permian Zechstein 3 stringer, western Dutch offshore. Geological Society, London, Special Publications , 363, 489–501, https://doi.org/10.1144/SP363.23
    [Google Scholar]
  72. Talbot, C.J.
    1998. Extrusions of Hormuz salt in Iran. Geological Society, London, Special Publications , 143, 315–334, https://doi.org/10.1144/GSL.SP.1998.143.01.21
    [Google Scholar]
  73. Van Gent, H., Urai, J.L. and De Keijzer, M
    . 2011. The internal geometry of salt structures – a first look using 3D seismic data from the Zechstein of the Netherlands. Journal of Structural Geology, 33, 292–311, https://doi.org/10.1016/j.jsg.2010.07.005
    [Google Scholar]
  74. Wagner, B.H., III and Jackson, M.P
    . 2011. Viscous flow during salt welding. Tectonophysics, 510, 309–326, https://doi.org/10.1016/j.tecto.2011.07.012
    [Google Scholar]
  75. Weijermars, R. and Jackson, M.P.A
    . 2014. Predicting the depth of viscous stress peaks in moving salt sheets: Conceptual framework and implications for drilling. AAPG Bulletin, 98, 911–945, https://doi.org/10.1306/09121313044
    [Google Scholar]
  76. Zak, I. and Freund, R
    . 1980. Strain measurements in eastern marginal shear zone of Mount Sedom salt diapir, Israel. AAPG Bulletin, 64, 568–581.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1144/petgeo2020-072
Loading
/content/journals/10.1144/petgeo2020-072
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error