1887
Volume 26, Issue 6
  • E-ISSN: 1365-2117

Abstract

Abstract

However salt has a viscous rheology, overburden rocks adjacent to salt diapirs have a brittle rheology. Evidence of deformation within the overburden has been described from diapirs worldwide. Gravity‐driven deposits are also present along the flanks of several diapirs. The well‐known example from the La Popa Basin in northern Mexico shows that such deposits may be organized into halokinetic sequences. This leads to several questions: (i) How does diapir growth contribute to overburden deformation? (ii) Are halokinetic sequence models valid for other areas beyond the La Popa Basin. The Bakio diapir and its well‐exposed overburden in Basque Country, Spain provides key elements to address these questions. The Bakio diapir consists of Triassic red clays and gypsum and is flanked by synkinematic middle to upper Albian units that thin towards the diapir. The elongate diapir parallels the Gaztelugatxe normal fault to the NE: both strike NE–SW and probably formed together during the middle Albian, as synkinematic units onlap the fault scarp. The diapir is interpreted as a reactive diapir in response to middle Albian motion on the Gaztelugatxe fault. The rate of salt rise is estimated to be about 500 m Myr−1 during this passive stage. During Late Albian, the diapir evolved passively as the Gaztelugatxe fault became inactive. Synkinematic units thinning towards the diapir, major unconformities, slumps and other gravity‐driven deposits demonstrate that most deformation related to diapir growth occurred at the sea floor. Halokinetic sequences composed of alternating breccias and fine‐grained turbidites recorded cyclic episodes of diapir flank destabilization. This work provides insights into drape fold and halokinetic sequence models and offers a new simple method for estimating rates of diapir growth. This method may be useful for outcrop studies where biostratigraphical data are available and for other passive diapirs worldwide.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12062
2014-05-24
2020-03-29
Loading full text...

Full text loading...

References

  1. Ábalos, B., Alkorta, A. & Iribar, V. (2008) Geological and isotopic constraints on the structure of the Bilbao Anticlinorium (Basque‐Cantabrian Basin, north Spain). J. Struct. Geol., 30, 1354–1367.
    [Google Scholar]
  2. Aftabi, P., Roustaie, M., Alsop, G.I. & Talbot, C.J. (2010) InSAR mapping and modelling of an active Iranian salt extrusion. J. Geol. Soc., 167, 155–170.
    [Google Scholar]
  3. Agirrezabala, L.M.1996. El Aptiense‐Albiense del Anticlinorio Nor‐Vizcaino entre Gernika y Azpeitia. PhD Thesis, Euskal Herriko Unibertsitatea, Bilbo, 429 pp.
  4. Agirrezabala, L.M. & García‐Mondéjar, J. (1989) Evolución tectosedimentaria de la plataforma urgoniana entre Cabo Ogoño e Itziar (Aptiense‐Albiense superior, Región vasco‐cantabrica oriental). In: Syrnposium, XIZ Congreso Español de Sedimentologia (Ed. by S.Robles , J.García‐Mondéjar , A.Garrote ), pp. 11–20. UPV & EVE, Bilbao.
    [Google Scholar]
  5. Alsop, G.I. (1996) Physical modelling of fold and fracture geometries associated with salt diapirism. In: Salt Tectonics (Ed. by AlsopG.I. , BlundellD.J. & DavisonI. ) Geol. Soc. (London) Spec. Publ., 100, 227–241.
    [Google Scholar]
  6. Alsop, G.I. & Marco, S. (2011) Soft‐sediment deformation within seismogenic slumps of the Dead Sea Basin. J. Struct. Geol., 33, 433–457.
    [Google Scholar]
  7. Alsop, G.I., Jenkins, G. & Davison, I. (1995). A preliminary study of drag zone geometry adjacent to salt diapirs, in Salt, sediment and hydrocarbons. Gulf Coast Section, SEPM 16th Annual Research Conference, p. 1–9.
  8. Alsop, G.I., Brown, J.P., Davison, I. & Gibling, M.R. (2000) The geometry of drag zones adjacent to salt diapirs. J. Geol. Soc. (London), 157, 1019–1029.
    [Google Scholar]
  9. Banham, S.G. & Mountney, N.P. (2013a) Evolution of fluvial systems in salt‐walled minibasins: a review and new insights. Sed. Geol., 296, 142–166.
    [Google Scholar]
  10. Banham, S.G. & Mountney, N.P. (2013b) Controls on fluvial sedimentary architecture and sediment‐fill state in salt‐walled mini‐basins: Triassic Moenkopi Formation, Salt Anticline Region, SE Utah. Basin Research, USA.
    [Google Scholar]
  11. Banham, S.G. & Mountney, N.P. (2014) Climatic versus halokinetic control on sedimentation in a dryland fluvial succession. Sedimentology, 61, 570–608.
    [Google Scholar]
  12. Barton, D.C. (1933) Mechanics of formation of salt domes with special reference to Gulf Coast salt domes of Texas and Louisiana. Am. Assoc. Pet. Geol. Bull., 17, 1025–1083.
    [Google Scholar]
  13. Basile, C., Pecher, A., Corazzi, M., Odonne, F., Maillard, A., Debroas, E.J. & Callot, P. (2009) TrackDip: a multi‐scale processing of dipmeter data – method, tests, and field example for 3‐D description of gravity‐driven deformations in the Eocene foreland basin of Ainsa, Spain. Mar. Pet. Geol., 26, 738–751.
    [Google Scholar]
  14. Bodego, A. & Agirrezabala, L.M. (2013) Syn‐depositional thin‐ and thick‐skinned extensional tectonics in the mid Cretaceous Lasarte sub‐basin, western Pyrenees. Basin Res., 25. doi:10.1111/bre.12017
    [Google Scholar]
  15. Canérot, J., Hudec, M. & Rockenbauch, K. (2005) Mesozoic diapirism in the Pyrenean orogen: salt tectonics on a transform plate boundary. Am. Assoc. Pet. Geol. Bull., 89, 211–229.
    [Google Scholar]
  16. Davison, I., Alsop, I., Birch, P., Elders, C., Evans, N., Nicholson, H., Rorison, P., Wade, D., Woodward, J. & Young, M. (2000) Geometry and late‐stage structural evolution of Central Graben salt diapirs, North Sea. Mar. Pet. Geol., 17, 499–522.
    [Google Scholar]
  17. Frumkin, A. (1996) Uplift rate relative to base‐levels of a salt diapir (Dead Sea basin, Israel) as indicated by cave levels. Geol. Soc. London Spec. Publ., 100, 41–47.
    [Google Scholar]
  18. García‐Mondéjar, J. (1996) Plate reconstruction of the Bay of Biscay. Geology, 24(7), 635–638.
    [Google Scholar]
  19. García‐Mondéjar, J. & Robador, A. (1986‐1987) Sedimentación y paleogeografía del Complejo Urgoniano (Aptiense‐Albiense) en el area de Bermeo (region Vasco‐Cantábrica septentional). Acta Geológica Hispánica, t. 21‐22, 411–418.
    [Google Scholar]
  20. García‐Mondéjar, J., Agirrezabala, L.M., Aranburu, A., Fernández‐Mendiola, P.A., Gómez‐Pérez, I., López‐Horgue, M.A. & Rosales, I. (1996) The Aptian‐Albian tectonic pattern of the Basque‐Cantabrian Basin (northern Spain). Geol. J., 31, 13–45.
    [Google Scholar]
  21. García‐Mondéjar, J., Fernández‐Mendiola, P.A., Agirrezabala, L.M., Aranburu, A., López‐Horgue, M.A., Iriarte, E. & Martinez de Rituerto, S. (2004) El Aptiense‐Albiense de la Cuenca Vasco‐Cantábrica. In: Geología de España (Ed. by J.A.Vera ), pp. 291–296. SGE‐IGME, Madrid.
    [Google Scholar]
  22. Giles, K.A. & Lawton, T.F. (2002) Halokinetic sequence stratigraphy adjacent to the El Papalote diapir, northeastern Mexico. Am. Assoc. Pet. Geol. Bull., 86, 823–840.
    [Google Scholar]
  23. Giles, K.A. & Rowan, M.G. (2012) Concepts in halokinetic‐sequence deformation and stratigraphy geological society, London. Spec. Publ., 363, 7–31.
    [Google Scholar]
  24. Gómez, M., Vergés, J. & Riaza, C. (2002) Inversion tectonics of the northern margin of the Basque Cantabrian Basin. Bulletin de la Société Géologique de France, 173(5), 449–459.
    [Google Scholar]
  25. Hudec, M.R., Jackson, M.P. & Schultz‐Ela, D.D. (2009) The paradox of minibasin subsidence into salt: clues to the evolution of crustal basins. Geol. Soc. Am. Bull., 121, 201–221.
    [Google Scholar]
  26. Ings, S.J. & Beaumont, C. (2010) Shortening viscous pressure ridges, a solution to the enigma of initiating salt ‘withdrawal'minibasins. Geology, 38, 339–342.
    [Google Scholar]
  27. Jackson, M.P.A. & Talbot, C.J. (1991) A glossary of salt tectonics. University of Texas at Austin, Bureau of Economic Geology Geological Circular No. 91‐4, 44.
  28. Jackson, M.P.A., Vendeville, B.C. & Schultz‐Ela, D.D. (1994) Structural dynamics of salt systems. Annu. Rev. Earth Planet. Sci., 22, 93–117.
    [Google Scholar]
  29. Jackson, M.P.A., Shultz‐Ela, D.D., Hudec, M.R., Watson, I.A. & Porter, M.L. (1998) Structure and evolution of Upheaval Dome: a pinched‐off salt diapir. Geol. Soc. Am. Bull., 110(12), 1547–1573.
    [Google Scholar]
  30. López‐Horgue, M.A., Owen, H.G., Aranburu, A., Fernández‐Mendiola, P.A. & García‐Mondéjar, J. (2009) Early late Albian (Cretaceous) of the central region of the Basque‐Cantabrian Basin, northern Spain: biostratigraphy based on ammonites and orbitolinids. Cretac. Res., 30, 385–400.
    [Google Scholar]
  31. López‐Horgue, M.A., Iriarte, E., Schröder, S., Fernández‐Mendiola, P.A., Caline, B., Corneyllie, H., Frémont, J., Sudrie, M. & Zerti, S. (2010) Structurally controlled hydrothermal dolomites in Albian carbonates of the Ason valley, Basque Cantabrian Basin, northern Spain. Mar. Pet. Geol., 27, 1069–1092.
    [Google Scholar]
  32. Martín‐Chivelet, J., Berástegui, X., Rosales, I., Vera, J.A., Vilas, L., Caus, E., Gräfe, K.‐U., Segura, M., Puig, C., Mas, R., Robles, S., Floquet, M., Quesada, S., Ruiz‐Ortiz, P.A., Fregenal‐Martínez, M.A., Salas, R., García, A., Martín‐Algarra, A., Arias, C., Meléndez, N., Chacón, B., Molina, J.M., Sanz, J.L., Castro, J.M., García‐Hernández, M., Carenas, B., García‐Hidalgo, J., Gil, J. & Ortega, F. (2002) Cretaceous. In: The Geology of Spain (Ed. by W.Gibbons & T.Moreno ), pp. 255–292, Geological Society of London, London.
    [Google Scholar]
  33. Nelson, T.H. (1991) Salt tectonics and listric normal faulting. In: The Gulf of Mexico Basin (The Geology of North America, J.) (Ed. by A.Salvador ), pp. 73–89. Geological Society of America, Boulder, CO.
    [Google Scholar]
  34. Ogg, J.G., Hinnov, L.A. & Huang, C. (2012) Cretaceous. In:The Geologic Time Scale (Ed. by F.M.Gradstein , G.Ogg & M.Schmitz ), Vol. 2, pp. 793–853.
    [Google Scholar]
  35. Pirazzoli, P.A., Reyss, J.L., Fontugne, M., Haghipour, A., Hilgers, A., Kasper, H.U., Nazari, H., Preusser, F. & Radtke, U. (2004) Quaternary coral‐reef terraces from Kish and Qeshm Islands, Persian Gulf: new radiometric ages and tectonic implications. Quatern. Int., 120, 15–27.
    [Google Scholar]
  36. Pujalte, V., Robles, S. & Gracía‐Mondejar, J. (1986‐1987) Características sedimentológicas y paleogeográficas del fan‐delta albiense de la Formación Monte Grande y su relationes con el Flysch Negro (Armintza‐Gorliz, Vizcaya). Acta. Geológica. Hispanica., t. 21–22, 141–150.
    [Google Scholar]
  37. Rat, P. (1988) The Basque‐Cantabrian Basin between the Iberian and the European Plates. Some facts but still many problems. Revista de la Sociedad de Geologia de España, 1, 3–4.
    [Google Scholar]
  38. Robles, S., Garrote, A. & García‐Mondéjar, J. (1989). XII Congreso Español de Sedimentología: Simposios y conferencias. Universidad del País Vasco. Departamento de Estratigrafía, Geodinámica y Paleontología, Bilbao.
    [Google Scholar]
  39. Robles, S., Pujalte, V. & García‐Mondéjar, J. (1988) Evolución de los sistemas sedimentarios del margen continental cantábrico durante el Albiense y Cenomaniense, en la transversal del litoral vizcaino. Revista de la Sociedad de Geologia de España, 1(3–4).
    [Google Scholar]
  40. Rowan, M.G., Lawton, T.F., Giles, K.A. & Ratliff, R.A. (2003) Near‐salt deformation in La Popa basin, Mexico, and the northern Gulf of Mexico: a general model for passive diapirism. Am. Assoc. Pet. Geol. Bull., 87, 733–756.
    [Google Scholar]
  41. Schultz‐Ela, D.D. (2003) Origin of ‘drag’ folds bordering salt diapirs. Am. Assoc. Pet. Geol. Bull., 87, 757–780.
    [Google Scholar]
  42. Stewart, S.A. (2006) Implications of passive salt diapir kinematics for reservoir segmentation and radial and concentric faults. Mar. Pet. Geol., 23, 843–853.
    [Google Scholar]
  43. Talbot, C. & Aftabi, P. (2004) Geology and models of salt extrusion at Qum Kuh, central Iran. J. Geol. Soc., 161, 321–334.
    [Google Scholar]
  44. Talbot, C.J. & Jarvis, R.J. (1984) Age, budget and dynamics of an active salt extrusion in Iran. J. Struct. Geol., 6, 521–533.
    [Google Scholar]
  45. Vendeville, B.C. & Jackson, M.P.A. (1992) The rise of diapirs during thin‐skinned extension. Mar. Pet. Geol., 9, 331–353.
    [Google Scholar]
  46. Vendeville, B.C. & Jackson, M.P.A. (1993) Some dogmas in salt tectonics challenged by modeling (abs.). American Association of Petroleum Geologists Hedberg International Research Conference on Salt Tectonics, Bath, England, September 1993, p. 263–265.
  47. Vicente‐Bravo, J.C. & Robles, S. (1991a) Geometría y modelo deposicional de la secuencia Sollube del Flysch Negro (Albiense medio, norte de Bizkaia). Geogaceta, 10, 69–72.
    [Google Scholar]
  48. Vicente‐Bravo, J.C. & Robles, S. (1991b) Caracterización de las facies de la transición canal‐lobulo en la secencia Jata del Flysch Negro (Albiense Superior, Norte de Vizcaya). Geogaceta, 10, 72–75.
    [Google Scholar]
  49. Vicente‐Bravo, J.C. & Robles, S. (1995) Large‐scale mesotopographic bedforms from the Albian Black Flysch, northern Spain: characterization, setting and comparisons with recent analogues. In: Atlas of Deep Water Environments: Architectural Style in Turbidite Systems (Ed. by K.T.Pickering , R.N.Hiscott , N.H.Kenyon , F.Ricci Lucchi & R.D.A.Smith ), pp. 216–226. Chapman & Hall, London.
    [Google Scholar]
  50. Voort, H.B. (1963) Zum flysch problem in den West‐pyrenäen. Geol. Rundsch., 53, 220–233.
    [Google Scholar]
  51. Weijermars, R., Jackson, M.P.A. & Vendeville, B.C. (1993) Rheological and tectonic modelling of salt provinces. Tectonophysics, 217, 143–174.
    [Google Scholar]
  52. Wiedmann, J. & Boess, J. (1984) Ammoniten funde aus der Biskaya‐synkline (Nordspanien)‐Kreidegliederung und Alter des Kreide‐Vulkanismus. Eclogae Geol. Helv., 77, 483–510.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12062
Loading
/content/journals/10.1111/bre.12062
Loading

Data & Media loading...

Supplements

. (a) Bedding planes attitudes from the Punta de Bakio stratigraphical section and results from the TrackDip method (tilts for window size less than 10 m are not shown, see Fig. S2).

PDF

. Details of several tilts that coincides on sedimentary structures as slumps and unconformities.

PDF

. Results of the TrackDip method showing the major tilts for the largest window sizes. . Results of the TrackDip method showing the tilts related to the s2 slumped interval. . Results of the TrackDip method showing the tilts related to the s3 slumped interval. . Results of the TrackDip method showing pair of tilts with opposing dip directions, related to small slumped structures.

WORD

 

PDF
  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error