1887
Volume 27, Issue 2
  • E-ISSN: 1365-2117

Abstract

Abstract

The southern South African continental margin documents a complex margin system that has undergone both continental rifting and transform processes in a manner that its present‐day architecture and geodynamic evolution can only be better understood through the application of a multidisciplinary and multi‐scale geo‐modelling procedure. In this study, we focus on the proximal section of the larger Bredasdorp sub‐basin (the westernmost of the five southern South African offshore Mesozoic sub‐basins), which is hereto referred as the Western Bredasdorp Basin. Integration of 1200 km of 2D seismic‐reflection profiles, well‐logs and cores yields a consistent 3D structural model of the Upper Jurassic‐Cenozoic sedimentary megasequence comprising six stratigraphic layers that represent the syn‐rift to post‐rift successions with geometric information and lithology‐depth‐dependent properties (porosities and densities). We subsequently applied a combined approach based on Airy's isostatic concept and 3D gravity modelling to predict the depth to the crust‐mantle boundary (Moho) as well as the density structure of the deep crust. The best‐fit 3D model with the measured gravity field is only achievable by considering a heterogeneous deep crustal domain, consisting of an uppermost less dense prerift meta‐sedimentary layer [ρ = 2600 kg m−3] with a series of structural domains. To reproduce the observed density variations for the Upper Cenomanian–Cenozoic sequence, our model predicts a cumulative eroded thickness of . 800–1200 m of Tertiary sediments, which may be related to the Late Miocene margin uplift. Analyses of the key features of the first crust‐scale 3D model of the basin, ranging from thickness distribution pattern, Moho shallowing trend, sub‐crustal thinning to shallow and deep crustal extensional regimes, suggest that basin initiation is typical of a mantle involvement deep‐seated pull‐apart setting that is associated with the development of the Agulhas‐Falkland dextral shear zone, and that the system is not in isostatic equilibrium at present day due to a mass excess in the eastern domain of the basin that may be linked to a compensating rise of the asthenospheric mantle during crustal extension. Further corroborating the strike‐slip setting is the variations of sedimentation rates through time. The estimated syn‐rift sedimentation rates are three to four times higher than the post‐rift sedimentation, thereby indicating that a rather fast and short‐lived subsidence during the syn‐rift phase is succeeded by a significantly poor passive margin development in the post‐rift phase. Moreover, the derived lithospheric stretching factors [β = 1.5–1.75] for the main basin axis do not conform to the weak post‐rift subsidence. This therefore suggests that a differential thinning of the crust and the mantle‐lithosphere typical for strike‐slip basins, rather than the classical uniform stretching model, may be applicable to the Western Bredasdorp Basin.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12064
2014-05-24
2020-08-13
Loading full text...

Full text loading...

References

  1. Airy, G.B. (1855) On the computation of the effect of the attraction of mountain‐masses, as disturbing the apparent astronomical latitude of stations in Geodetic Surveys. Philosophical Trans. Royal Soc London, 145, 101–104.
    [Google Scholar]
  2. Allen, P.A. & Allen, J.R. (2005) Basin Analysis: Principles and Applications, 2nd edn. Blackwell Publishing, Maden, USA, p. 549.
    [Google Scholar]
  3. Allen, M.B., Kheirkhah, M., Emami, M.H. & Jones, S.J. (2011) Right‐lateral shear across Iran and kinematic change in the Arabia‐Eurasia collision zone. Geophys. J. Intl., 184(2), 555–574. doi:10.1111/j.1365‐246X.2010.04874.x
    [Google Scholar]
  4. Amante, C. & Eakins, B.W. (2009) ETOPO1 1 arc‐Minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC‐24, 19.
  5. Athy, L.F. (1930) Density, porosity, and compaction of sedimentary rocks. Am. Assoc. Pet. Geol. Bull., 14(1), 1–24.
    [Google Scholar]
  6. Aydin, A. & Nur, A. (1982) Evolution of pull‐apart basins and their scale independence. Tectonics, 1, 91–105.
    [Google Scholar]
  7. Ben‐Avraham, Z. & Zoback, M.D. (1992) Transform‐normal extension and asymmetric basins: an alternative to pull‐apart models. Geology, 20, 423–426.
    [Google Scholar]
  8. Ben‐Avraham, Z., Hartnady, C.J.H. & Malan, J.A. (1993) Early tectonic extension between the Agulhas Bank and the Falkland Plateau due to the rotation of the Lafonia micro‐plate. Earth Planet. Sci. Lett., 117, 43–58. doi:10.1016/0012‐821X(93)90116‐Q
    [Google Scholar]
  9. Ben‐Avraham, Z., Hartnady, C.J.H. & Kitchin, K.A. (1997) Structure and tectonics of the Agulhas‐Falkland fracture zone. Tectonophysics, 282, 83–98. doi:10.1016/S0040‐1951(97)00213‐8
    [Google Scholar]
  10. Broad, D.S., Jungslager, E.H.A., McLachlan, I.R. & Roux, J. (2006) Geology of the offshore Mesozoic basins. In: The Geology of South Africa (Ed. by M.R.Johnson , C.R.Anhaeusser & R.J.Thomas ), pp. 553–571. Geol. Soc. South Africa, Pretoria.
    [Google Scholar]
  11. Brown, L.F.Jr, Benson, J.M., Brink, G.J., Doherty, S., Jollands, A., Jungslager, E.H.A., Keenen, J.H.G., Muntingh, A. & Van Wyk, N.J.S. (1995) Sequence stratigraphy in offshore South African divergent basins. An atlas on exploration for Cretaceous lowstand traps. Soekor (Pty) Ltd. Studies in Geology. Am. Assoc. Pet. Geol., 41, 184.
    [Google Scholar]
  12. Burden, P.L.A. (1992) Soekor, partners explore possibilities in Bredasdorp Basin off South Africa. Oil Gas J., 90, 109–112.
    [Google Scholar]
  13. Christensen, N.I. & Mooney, W.D. (1995) Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res., 100, 9761–9788.
    [Google Scholar]
  14. Crowell, J.C. (1974) Origin of late Cenozoic basins in southern California. In: Tectonics and Sedimentation (Ed. by DickinsonW.R. ), Spec. Publ. Soc. Economic Paleontologists Mineralogists, 22, 190–204.
    [Google Scholar]
  15. Davies, C.P.N. (1997a) Hydrocarbon evolution of the Bredasdorp Basin, offshore South Africa: from source to reservoir. Unpublished PhD Thesis, University of Stellenbosch, 286 pp.
  16. Davies, C.P.N. (1997b) Unusual biomarker maturation ratio changes through the oil window, a consequence of varied thermal history. Org. Geochem., 27(7/8), 537–560.
    [Google Scholar]
  17. Dingle, R.V., Siesser, W.G. & Newton, A.R. (1983) Mesozoic and Tertiary Geology of Southern Africa. A.A. Balkema, Rotterdam, 375 pp.
    [Google Scholar]
  18. Duncan, R.A. (1981) Hotspots in the Southern Ocean‐ an absolute frame of reference for motion of the Gondwana continent. Tectonophysics, 74, 29–42.
    [Google Scholar]
  19. Gardner, G.H.F., Gardner, L.W. & Gregory, A.R. (1974) Formation velocity and density‐ the diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770–780.
    [Google Scholar]
  20. Garfunkel, Z. (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics, 80, 81–108.
    [Google Scholar]
  21. GETECH
    GETECH (1992) African Magnetic Mapping Project ‐ Total Magnetic Field Anomaly Map: South Africa. ULIS Ltd, Leeds, UK.
    [Google Scholar]
  22. Gohl, K. & Uenzelmann‐Neben, G. (2001) The crustal role of the Agulhas Plateau, southwest Indian Ocean: evidence from seismic profiling. Geophys. J. Int., 144, 632–646. doi:10.1046/j.1365‐246x.2001.01368.x
    [Google Scholar]
  23. Götze, H.‐J. & Schmidt, S. (2010) IGMAS+: a new 3D gravity, FTG and magnetic modelling software tool. In: Airborne Gravity 2010 ‐ Expanded abstracts from the ASEG‐PESA Airborne Gravity 2010 Workshop (Ed. by R.J.L.Lane ), published jointly by Geoscience Australia and the Geological Survey of New South Wales, Geoscience Australia Record 2010/23 and GSNSW File GS2010/0457, pp. 91–96. ISBN 978‐1‐921781‐17‐9.
    [Google Scholar]
  24. Goutorbe, B., Lucazeau, F. & Bonneville, A. (2008) The thermal regime of South African continental margins. Earth Planet. Sci. Lett., 267, 256–265.
    [Google Scholar]
  25. Hirsch, K.K., Scheck‐Wenderoth, M., Paton, D.A. & Bauer, K. (2007) Crustal structure beneath the Orange Basin, South Africa. S. Afr. J. Geol., 110, 249–260.
    [Google Scholar]
  26. Hirsch, K.K., Bauer, K. & Scheck‐Wenderoth, M. (2009) Deep structure of the western South African passive margin ‐ Results of a combined approach of seismic, gravity and isostatic investigations. Tectonophysics, 470, 57–70.
    [Google Scholar]
  27. Kimbell, G.S., Gatliff, R.W., Ritchie, J.D., Walker, A.S.D. & Williamson, J.P. (2004) Regional three‐dimensional gravity modelling of the NE Atlantic margin. Basin Res., 16, 259–278. doi:10.1111/j.1365‐2117.2004.00232.x
    [Google Scholar]
  28. Larionov, V.V. (1969) Borehole Radiometry: Moscow. U.S.S.R., Nedra.
    [Google Scholar]
  29. Ludwig, W.J., Nafe, J.E. & Drake, C.L. (1970) Seismic refraction. In: The Sea (Ed. by A.E.Maxwell ), pp. 53–84. Wiley‐Interscience, New York.
    [Google Scholar]
  30. Madon, M.B. & Watts, A.B. (1998) Gravity anomalies, subsidence history and the tectonic evolution of the Malay and Penyu Basins (offshore Peninsular Malaysia). Basin Res., 10, 375–392.
    [Google Scholar]
  31. Martin, A.K. (1987) Plate reorganizations around Southern Africa, hotspots and extinctions. Tectonophysics, 142, 309–316.
    [Google Scholar]
  32. Maystrenko, Y. & Scheck‐Wenderoth, M. (2009) Density contrasts in the upper mantle and lower crust across the continent–ocean transition: constraints from 3‐D gravity modelling at the Norwegian margin. Geophys. J. Intl., 179(1), 536–548. doi:10.1111/j.1365‐246X.2009.04273.x
    [Google Scholar]
  33. McKenzie, D. (1978) Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett., 40, 25–32.
    [Google Scholar]
  34. McMillan, I.K., Brink, G.I., Broad, D.S. & Maier, J.J. (1997) Late Mesozoic basins off the south coast of South African. In: African Basins (Ed. by R.C.Selley ), pp. 319–376, Elsevier, Amsterdam.
    [Google Scholar]
  35. van der Merwe, R. & Fouché, J. (1992) Inversion tectonics in the Bredasdorp Basin, offshore South Africa. In: Inversion Tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa (Ed. by M.J.De Wit , I.G.D.Ransome ), pp. 49–59. A.A. Balkema, Rotterdam.
    [Google Scholar]
  36. Morley, C.K., Kongwung, B., Julapour, A.A., Abdolghafourian, M., Hajian, M., Waples, D., Warren, J., Otterdoom, H., Srisuriyon, K. & Kazemi, H. (2009) Structural development of a major late Cenozoic basin and transpressional belt in central Iran: the Central Basin in the Qom‐Saveh area. Geosphere, 5, 325–362.
    [Google Scholar]
  37. Parsiegla, N., Gohl, K. & Uenzelmann‐Neben, G. (2007) Deep crustal structure of the sheared South African continental margin: first results of the Agulhas‐Karoo Geoscience Transect. S. Afr. J. Geol., 110, 393–406. doi:10.2113/gssajg.110.2‐3.393
    [Google Scholar]
  38. Parsiegla, N., Stankiewicz, J., Gohl, K., Ryberg, T. & Uenzelmann‐Neben, G. (2009) Southern African continental margin: dynamic processes of a transform margin. Geochem. Geophys. Geosyst., 10, Q03007. doi:10.1029/2008GC002196
    [Google Scholar]
  39. Paton, D.A. & Underhill, J.R. (2004) Role of crustal anisotropy in modifying the structural and sedimentological evolution of extensional basins: the Gamtoos Basin. South Africa, Basin Res., 16, 339–359. doi:10.1111/j.1365‐2117.2004.00237.x
    [Google Scholar]
  40. Petroleum Agency South Africa
    Petroleum Agency South Africa (PASA) (2012) Petroleum Exploration in South Africa: Information and Opportunities. PASA, Cape Town, 30 pp.
    [Google Scholar]
  41. Poelchau, H.S., Baker, D.R., Hantschel, T., Horsfield, B. & Wygrala, B. (1997) Basin simulation and the design of the conceptual basin model. In: Petroleum and Basin Evolution (Ed. by D.H.Welte , B.Horsfield & D.R.Baker ), pp. 5–70. Springer, Berlin/Heidelberg/New York.
    [Google Scholar]
  42. Purucker, M.E. & Whaler, K.A. (2007) Crustal magnestism. In: Geomagnetism: Treatise on Geophysics, Vol 5 (Ed. by G.Schubert ), pp. 195–235. Elsevier B.V., Amsterdam, The Netherlands.
    [Google Scholar]
  43. Roussos, N. & Lyssimachou, T. (1991) Structure of the Central North Aegean Trough: an active strike‐slip deformation zone. Basin Res., 3, 37–46.
    [Google Scholar]
  44. Roux, J. (2007) Republic of South Africa 2007 license round‐ Area C: Proximal Bredasdorp Basin. Petroleum Agency, South Africa, 26 pp.
    [Google Scholar]
  45. Sandwell, D.T. & Smith, W.H.F. (2009) Global marine gravity from retracked Geosat and ERS‐1 altimetry: ridge segmentation versus spreading rate. J. Geophys. Res., 114, B01411. doi:10.1029/2008JB006008
    [Google Scholar]
  46. Scheck, M. & Bayer, U. (1999) Evolution of the northeast German basin‐ Inferences from a 3D structural model and subsidence analysis. Tectonophysics, 313, 145–169.
    [Google Scholar]
  47. Schmidt, S., Plonka, C., Götze, H.‐J. & Lahmeyer, B. (2011) Hybrid modelling of gravity, gravity gradients and magnetic fields. Geophys. Prospect., doi:10.1111/j.13652478.2011.00999.x
    [Google Scholar]
  48. Scrutton, R. & Dingle, R. (1976) Observations on the processes of sedimentary basin formation at the margins of southern Africa. Tectonophysics, 36(1–3), 143–156.
    [Google Scholar]
  49. Stieber, S.J. (1970) Pulsed neutron capture log evaluation, Louisiana Gulf Coast. Soc. Pet. Engrs. Annual Fall Meeting Proceedings, SPE 2961.
    [Google Scholar]
  50. Thomson, K. (1998) When did the Falklands rotate?Mar. Pet. Geol., 15, 723–736.
    [Google Scholar]
  51. Tinker, J., de Wit, M.J. & Brown, R. (2008) Linking source and sink: evaluating the balance between onshore erosion and offshore sediment accumulation since Gondwana break‐up, South Africa. Tectonophysics, 455, 94–103.
    [Google Scholar]
  52. Van Wagoner, J.C., Mitchum, R.M.Jr, Posamentier, H.W. & Vail, P.R. (1987) Seismic stratigraphy interpretation procedure using sequence stratigraphy, part II: key definitions of sequence stratigraphy. In: Atlas of Seismic Stratigraphy (Ed. by A.W.Bally ) Studies in Geology, Am. Assoc. Pet. Geol., 27, 11–14.
    [Google Scholar]
  53. Van Wyk, N.J.S., Roux, J., Broad, D.S., Valicenti, V.H. & Brink, G.J. (1994) Correlation of old and new horizons, South Coast Blocks 7 to 12. SOEKOR unpublished rept., SOE‐EXP‐RPT‐240, p. 7.
  54. Walker, J.D. & Geissman, J.W. (compilers 2009) Geologic time scale. Geol. Soc. Am., doi:10.1130/2009.CTS004R2C
    [Google Scholar]
  55. Waples, D.W. (2002) Evolution of sandstone porosity through time. The Modified Scherer Model: a calculation method applicable to 1‐D maturity modelling and perhaps to Reservoir Prediction. Natural Resources Res., 11 (4), 257–272.
    [Google Scholar]
  56. Wu, J.E., McClay, K., Whitehouse, P. & Dooley, T. (2009) 4D analogue modelling of transtensional pull‐apart basins. Mar. Pet. Geol., 26, 1608–1623. doi:10.1016/j.marpetgeo.2008.06.007
    [Google Scholar]
  57. Xie, X. & Heller, P.L. (2009) Plate tectonics and basin subsidence history. GSA Bulletin, 121(1/2), 55–64. doi:10.1130/B26398.1
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12064
Loading
/content/journals/10.1111/bre.12064
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error