1887
Volume 27, Issue 3
  • E-ISSN: 1365-2117

Abstract

Abstract

The diagenetic evolution of Permian (Autunian and Saxonian) and Triassic (Buntsandstein) sandstones and mudrocks have been studied over 1000 m sequence from the Sigüenza 44‐3 drill core in the Iberian Range, Spain. We compare and contrast the diagenetic processes in these different lithologies and the timing of clay mineral formation. Moreover, we establish the relationship between clay mineral diagenesis and reservoir potential. Both the Permian and Triassic successions are characterised by conglomerates, sandstones and interbedded mudstones of fluvial origin that change upwards into distal deposits of a fluvio‐deltaic system. The clay minerals are illite, illite‐smectite mixed layers, kaolinite and dickite. The illite content in all sequences is not related to diminished feldspars; it is owing to the initial detrital mineralogical composition of the Autunian sandstones. The effect of feldspar alteration to kaolin minerals has a strong influence on the lost of porosity‐permeability in the Saxonian facies. In contrast, illite and mixed layers illite‐smectite are the main clay rims preserving porosity in the Buntsandstein sandstones. However, fibrous illite is the dominant pore‐filling in the Permian Autunian facies, closing porosity and permeability. Kaolinite and dickite show opposite trends: dickite increases yet kaolinite decreases from Triassic to Permian sandstones. Dickite replaced kaolinite during burial‐thermal evolution of the succession. The δD and δ18O isotopic signatures from silt and clay fractions indicate a mixture of meteoric and marine waters, and suggest a minimum temperature range between 60 and 150 °C for diagenetic pore fluids. The Permian δD values (−24‰ to −44‰) are relatively similar to Buntsandstein values (−24‰ to −37‰). However, the Permian δ18O values (+7.6 and +15.3, average of +13.3‰) are generally higher by . 6.2‰ compared to the Buntsandstein data (4.8–10.1‰, average +7.1‰). Such a variation is interpreted as the result of mesodiagenetic pore fluid changes. The extensive dickitisation of kaolinite is attributed to increased hydrogen ions resulting from maturation of organic matter. The vitrinite reflectance of organic matter and the modelled thermal history suggest a maximum burial of 3400 m, accomplished 70 Ma ago. The Permo‐Triassic reached the gas window shortly before major uplift, at 65 Ma, when further maturation and hydrocarbon expulsion ceased.

Loading

Article metrics loading...

/content/journals/10.1111/bre.12074
2014-07-10
2024-04-26
Loading full text...

Full text loading...

References

  1. Abad, I., Murphy, B., Nieto, F. & Gutièrrez‐ Alonso, G. (2010) Diagenesis to metamorphism transition in an episutural basin: the late Paleozoic St. Mary′s Basin, Nova Scotia, Canada. Can. J. Earth Sci., 47, 121–135.
    [Google Scholar]
  2. Arribas, J., Marfil, R. & de la Peña, J.A. (1985) Provenance of Triassic feldspathic sandstones in the Iberian Range (Spain). J. Sediment. Petrol., 55, 864–868.
    [Google Scholar]
  3. Barbero, L., Glasmacher, U.A., Villaseca, C., Lopez Garcia, J.A. & Martin‐Romera, C. (2005) Long‐term thermo‐tectonic evolution of the Montes de Toledo area (Central Hercynian Belt, Spain): Constraints from apatite fission‐track analysis. International Journal of Earth Sciences. Geol. Rundsch., 94, 193–203.
    [Google Scholar]
  4. Berger, G., Velde, B. & Aigouy, T. (1999) Potassium sources and illitization in Texas Gulf coast shale diagenesis. J. Sediment. Res., 69, 151–157.
    [Google Scholar]
  5. Bjørkum, A., Knarud, R. & Bergan, M. (1993) How important is the late cimmerian unconformity in controlling formation of Kaolinite in Sandstones of the North Sea? (Examples From The Snorre Field). In: Diagenesis, Sequence Stratigraphy and Changes in Relative Sea Level. Diagenesis and Basin Development (Ed. by R.Wordem & S.Morad ), pp. 261–269. Published by Blackwell Publishing, Oxford, UK.
    [Google Scholar]
  6. Bjorlykke, K., Aagaard, P., Dypvik, H., Hastings, D.S. & Harper, A.S. (1986) Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore mid Norway. In: Habitat of Hydrocarbon on the Norwegian Continental Shelf (Ed. by E.Holter , A.M.Spencer , C.J.Campbell , S.H.Hanslien , P.H.H.Nelson , E.N.Nuscether & E.G.Ormaasen ), pp. 276–286. Norwegian Petroleum Society, Published by Graham and Trotman, London.
    [Google Scholar]
  7. Bjorlykke, K., Nedkvinie, T., Ram, M. & Saigal, G.C. (1992) Diagenetie processes in the Brent Group (Middle Jurassic) reservoirs of tbe North Sea: an overvíew. In: Geology of the Brent Group (Ed. by MortonA.C. , HaszvroínuR.S. , GilesM.R. & BrownS. ), Geol. Soc. Spec. Publ., 61, 263–287.
    [Google Scholar]
  8. Bourquin, S., Bercovici, A., López‐Gómez, J., Díez, J.B., Broutin, J., Ronchi, A., Durand, M., Arche, A., Linol, B. & Amour, L. (2011) The Permian–Triassic transition and the onset of Mesozoic sedimentation at the northwestern peri‐Tethyan domain scale: palaeogeographic maps and geodynamic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 265–280.
    [Google Scholar]
  9. Capuano, R.M. (1992) The temperature dependence of hydrogen isotope fractionation between clay minerals and water: Evidence from a geopressured system. Geochim. Cosmochim. Acta, 56, 2547–2554.
    [Google Scholar]
  10. Chun, F.H. (1975) Quantitative interpretation of X‐ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities. J. Appl. Cryst., 8, 17–19.
    [Google Scholar]
  11. Clauer, N., Liewig, N., Ledesert, B. & Zwingmann, H. (2008) Thermal history of Triassic sandstones from the Vosges Mountains‐Rhine Graben rifting area, NE France, based on K‐Ar illite dating. Clay Miner., 43, 363–379.
    [Google Scholar]
  12. Clayton, R. & Mayeda, T. (1963) The use of bromine pent fluoride in the extraction of oxygen from oxides and silicates for isotopic análisis. Geochim. Cosmochim. Acta, 27, 43–52.
    [Google Scholar]
  13. Delgado, A. & Reyes, E. (1993) Isotopic study of the diagenetic y hydrothermal origins of the bentonite deposits at Los Escullos (Almería, Spain). In: Current Research in Geology Applied to Ore Deposits (Ed. by P.Fenoll Hach‐Ali , J.Torres‐Ruiz , F.Y.Gervilla ), pp. 675–678. CSIC, Madrid.
    [Google Scholar]
  14. Espitalié, J., Dreo, G. & Marquis, F. (1985a) La Pyrolyse Rock Eval et ses application. Part. I. Rev. Inst. Franc. Petrol., 40, 563–578.
    [Google Scholar]
  15. Espitalié, J., Dreo, G. & Marquis, F. (1985b) La Pyrolyse Rock Eval et ses application. Part II. Rev. Inst. Franc. Petrol., 40, 755–784.
    [Google Scholar]
  16. Fischer, C., Dunkl, I., von Eynatten, H., Wijbrans, J.R. & Gaupp, R. (2012) Products and timing of diagenetic processes in Upper Rotliegend sandstones from Bebertal (North German Basin, Parchim Formation, Flechtingen High, Germany). Geol. Mag., 149, 827–840.
    [Google Scholar]
  17. Gaupp, R., Matter, A., Platt, J., Ramseyer, K. & Walzebrruck, J. (1993) Diagenesis and fluid evolution of deeply buried Permian (Rotliegend) Gas Reservoirs, Northwest Germany. AAPG Bull., 77, 1111–1128.
    [Google Scholar]
  18. Giles, M.R., Stevenson, S., Martín, S.V., Cannon, S.J.C., Hamilton, P.J., Marshall, J.D. & Samways, G.M. (1992) The reservoir properties and diagenesis of the Brent Group: a regional perspective. In: Geology of Brent Group (Ed. by MortonA.C. , HaszeldineR.S. , GilesM.R. & BrownS. ): Geol. Soc. Spec. Publ., 61, 289–327.
    [Google Scholar]
  19. Glasmann, J.R., Lundergard, P.D., Clark, R.A., Penny, B. & Collins, I.D. (1989) Geochemical evidence for the history of diagenesis and fluid migration: Brent sandstone. Heather field, North Sea. Clay Miner., 24, 255–284.
    [Google Scholar]
  20. Godfrey, J.D. (1962) The deuterium content of hydrous minerals from the East‐Central Sierra Nevada and Yosemite National Park. Geochim. Cosmochim. Acta, 26, 1215–1245.
    [Google Scholar]
  21. Graham, C.M. (1987) Experimental study of hydrogen‐isotope exchange between aluminous chlorite and water and of hydrogen diffusion in chlorite. Am. Mineral., 72, 566–579.
    [Google Scholar]
  22. Greenwood, P.J., Shaw, H.F. & Fallick, A.E. (1994) Petrographic and isotopic evidence for diagenetic processes in Middle Jurassic sandstones and muds rocks from the Brae Area, North Sea. Clay Miner., 29, 637–650.
    [Google Scholar]
  23. Haszeldine, S., Brint, J.F., Fallick, A.E., Hamilton, P.J. & Brown, S. (1992) K/Ar dating of illites in Brent Group reservoir. In: Geology of the Brent Group (Ed. by MortonA.C. , HaszeldineR.S. , GilesM.R. & BrownS. ) Geol. Soc. Spec. Publ., 61, 377–400.
    [Google Scholar]
  24. Kantorowitcz, J.D.1. (1984) The nature, origin and distribution of authigenic clay minerals from middle Jurassic Ravenscar and Brent group sandstones. Clay Miner., 19, 359–375.
    [Google Scholar]
  25. Ketzer, J.M., Morad, S., Nystuen, J.P. & de Ros, L.F. (2003) The role of the Cimmerian Unconformity (Early Cretaceous) on the kaolinitization and reservoir quality evolution of Triassic sandstones of the Snorre Field, North Sea. In: Clay‐Mineral Cementation in Sandstones (Ed. by WordenR. & MoradS. ), Int. Assoc. Sedimentol. Spec. Publ., 34, 353–374.
    [Google Scholar]
  26. Kubler, B. (1968) Evaluation quantitative du m'etamorphisme par la cristallinité de l'illite. Bulletin du Centre de Recherches Pau‐SNPA, 2, 385–397.
    [Google Scholar]
  27. Kyser, T.K. & Kerrich, R. (1991) Retrograde exchange of hydrogen isotopes between hydrous minerals and water at low temperatures. In: Stable Isotope Geochemistry: A Tribute to Samuel Esptein (Ed. by H.P.Taylor , J.R.O'Neil & I.R.Kaplan ), Geochem. Soc. Spec. Publ., 3, 409–422.
    [Google Scholar]
  28. Lander, R.H. & Bonnell, L.M. (2010) A model for fibrous illite nucleation and growth in sandstones. AAPG Bull., 94, 1161–1187.
    [Google Scholar]
  29. Lander, R.H., Bloch, S., Mehta, S. & Atkinson, C.D. (1990) Burial diagenesis of paleosols in the Giant Yacheng Gas field, People's Republic of China: bearing on illite reaction pathways. J. Sediment. Res., 61, 256–268.
    [Google Scholar]
  30. Lanson, B., Beaufort, D., Berger, G., Bauer, A., Cassagnabère, A. & Meunier, A. (2002) Authigenic kaolin and illitic minerals during burial diagenesis of sandstones: a review. Clay Miner., 37, 1–22.
    [Google Scholar]
  31. Lombardi, G. & Sheppard, W.S.M.F. (1976) Petrographic and isotopic studies of the altered acid Volcanics of the Tolfa‐Cerite area, Italy: The genesis of the clays. Clay Miner., 12, 147–162.
    [Google Scholar]
  32. Lopez, M.A. (1986) Analisis preliminary de la subsidencia en el sector de la Cordillera Iberica. Intern. Rep. CGS, 19.
    [Google Scholar]
  33. Marfil, R. & Pérez‐Gonzalez, A. (1973) Estudio de las series rojas pérmicas en el sector Nor‐Occidental de la Cordillera Ibérica (Región de El Bosque, Alto Tajuña). Estud. Geol., 29, 83–98.
    [Google Scholar]
  34. Marfil, R., Arribas, J., Arribas, M.E. & de la Peña, J.A. (1984) Sedimentación lacustre (carbonatada‐salina) en las facies Autuniense de la Cordillera Ibérica. Libro Homenaje a Luis Sánchez de la Torre. Publicaciones de Geología n° 20. Universidad Autónoma de Barcelona, 73–83.
  35. Marfil, R., Bonhomme, M.G., de la Peña, J.A., Penha Dos Santos, R. & Sell, I. (1996a) La edad de las ilitas en areniscas pérmicas y triásicas de la Cordillera Ibérica mediante el método K/Ar: Implicaciones en la historia diagenética y evolución de la cuenca. Cuad. Geol. Ibérica, 20, 61–83.
    [Google Scholar]
  36. Marfil, R., Delgado, A., Rossi, C., Iglesia, A.L. & Ramseyer, K. (2009) Origin and diagenetic evolution of kaolin in reservoir sandstones and associated shales of the Jurassic and Cretaceous, Salam Field, Western Desert (Egypt). In: Clay Mineral Cements in Sandstones, Vol. 3 (Ed. by R.H.Worden & S.Morad ), pp. 319–342. International Association of Sedimentologists (IAS), Special publication, Oxford, UK.
    [Google Scholar]
  37. Marfil, R., Scherer, M. & Turrero, M.J. (1996b) Diagenetic processes influencing porosity in sandstones from the Triassic Buntsandstein of the Iberian Range, Spain. Sed. Geol., 105, 203–219.
    [Google Scholar]
  38. Martín‐Crespo, T., Delgado, A., Vindel‐Catena, E., López‐García, J.A. & Fabre, C. (2002) The latest Post‐Variscan fluids in the Spanish Central System: evidence from fluid inclusion and stable isotope data. Mar. Pet. Geol., 19, 323–337.
    [Google Scholar]
  39. Martin‐Martin, J.D., Gomez‐Gras, D., Sanfeliu, T., Thiry, M., Ruiz‐Cruz, M.D. & Franco, F. (2007) Extensive dickitization of the Permo‐Triassic fluvial sandstones from the Eastern Iberian Ranges, Spain. Clays Clay Miner., 55, 481–490.
    [Google Scholar]
  40. McAulay, G.E., Burley, S.D., Fallick, A.E. & Kusznir, N.J. (1994) Paleohydrodynamic fluid flow regimes during diagenesis of the Brent Group in the Hutton‐NW Hutton reservoirs: constraints from oxygen isotopic studies of autigenic kaolin and reverse flexural modeling. Clay Miner., 29, 609–626.
    [Google Scholar]
  41. Milliken, K.L. (1992) Chemical behaviour of detrital feldspars in mudrocks versus sandstones. Frio Formation (Oligocene), South Texas. J. Sed. Petrol., 62, 790–801.
    [Google Scholar]
  42. Morad, S., Marfil, R. & de la Peña, J.A. (1989) Diagenetic K‐feldspar pseudomorphs in the Triassic Buntsandstein sandstones of the Iberian Range, Spain. Sedimentology, 36, 635–650.
    [Google Scholar]
  43. Morad, S., Al‐Aasm, I.S., Ramseyer, K., Marfil, R. & Aldaahan, A.A. (1990) Diagenesis of carbonate cements in Permo‐Triassic sandstones from the Iberian Range, Spain: Evidence from chemical composition and stable isotopes. Sed. Geol., 67, 281–295.
    [Google Scholar]
  44. Morad, S., Worden, R. & Ketzer, J.L. (2003) Oxigen and hydrogen isotopic composition of diagenetic clay mineral in sandstones: a review of the data and controls. In: Clay‐Mineral Cementation in Sandstones (Ed. by WordenR. & MoradS. ), Int. Assoc. Sedimentol. Spec. Publ., 34, 63–91.
    [Google Scholar]
  45. del Rio, P., Barbero, L. & Stuart, M. (2009) Exhumation of the Sierra de Cameros (Iberian Range, Spain): Constrains from low‐temperature thermochronology. Geol. Soc. Spec. Publ., 324, 153–166.
    [Google Scholar]
  46. Robinson, A.G., Coleman, M.L. & Gluyas, J.G. (1993) The age of illite cement growth, Village fields area, southern North Sea: Evidence from K‐Ar ages and 18O/16O ratios. AAPG Bull., 77, 68–80.
    [Google Scholar]
  47. de Ros, L.F. (1998) Heterogeneous generation and evolution of diagenetic quartzarenites in the Silurian‐Devonian Furnas Formation of the Paraná Basin, southern Brazil. Sed. Geol., 116, 99–129.
    [Google Scholar]
  48. Salas, R. & Casas, A. (1993) Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian Basin. Tectonophysics, 228, 33–35.
    [Google Scholar]
  49. Salas, R., Guimerá, J., Mas, R., Martin‐Closas, C., Melendez, A. & Alonso, A. (2001) Evolution of the Mesozoic Central Iberian Rift System and its Cenozoic Inversion (Iberian Chain). In: Peri‐Thetys Memoir 6: Mémoires du Muséum national de Histoire Naturelle (Ed. by ZieglerP.A. , CavazzaW. , RobertsonA.F.H. & Crasquin‐ SoleauS. ), 186, 145–185.
    [Google Scholar]
  50. Sanz, E. & Yélamos, J.G. (1998) Methodology for the study of unexploited aquifers with thermal waters: Application to the aquifer of the Alhama de Aragón Hot Springs. Ground Water, 36, 913–923.
    [Google Scholar]
  51. Savin, S.M. (1967) Oxygen and Hydrogen Isotope Ratios in Sedimentary Rocks and Minerals. Unpublished PhD Thesis, California Institute of Technology.
  52. Schmidt, V. & McDonald, D.A. (1979) The role of secondary porosity in the course of sandstone diagenesis. S.E.M.P., Special Pub., 26, 175–207.
    [Google Scholar]
  53. Shaw, H.F. & Conybeare, D.M. (2003) Pattterns of clay mineral diagenesis in interbedded mudrocks and sandstones: an example from the Paleocene of the North Sea. Int. Assoc. Sedimentol. Spec. Publ., 34, 129–145.
    [Google Scholar]
  54. Sheppard, S.M.F. & Gilg, H.A. (1996) Stable isotope geochemistry of Clay Minerals. Clay Miner., 31, 1–24.
    [Google Scholar]
  55. Sheppard, S.M.F., Nielsen, R.L. & Taylor, H.P.J.R. (1969) Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ. Geol., 64, 755–777.
    [Google Scholar]
  56. Stroker, T. & Harris, N. (2009) K‐Ar dating of authigenic illites: integrating diagenetic history of the Mesa Verde Group, Piceance Basin, NW Colorado (abs.). AAPG Ann. Meet. Abs., 18, 206.
    [Google Scholar]
  57. Taylor, T.R., Giles, M.R., Hathon, L.A., Diggs, T.N., Braunsdorf, N.R., Birbiglia, G.V., Kittridge, M.G., Macaulay, C.Y. & Espejo, I.S. (2010) Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bull., 94, 1093–1132.
    [Google Scholar]
  58. Thyne, G., Boudreau, B.P., Ramm, M. & Midtbø, R.E. (2001) Simulation of potassium feldspar dissolution and illitization in the Statfjord Formation, North Sea. AAPG Bull., 85, 621–635.
    [Google Scholar]
  59. Tornos, F., Delgado, A., Casquet, C. & Galindo, C. (2000) 300 million years of episodic hydrothermal activity: stable isotope evidence from hydrothermal rocks of the Eastern Iberian Central System. Miner. Deposita, 35, 551–569.
    [Google Scholar]
  60. Van De Kamp, P.C. (2010) Arcose, subarcose, quartz sand and associated muds derived from felsic plutonic rocks in glacial to tropical humid climates. J. Sediment. Res., 80, 895–918.
    [Google Scholar]
  61. Vennemann, T. & Smith, H. (1990) The rate and temperature of reaction of ClF3 with silicate minerals and their relevance to oxygen isotope analysis. Chem. Geol., 86, 83–88.
    [Google Scholar]
  62. Wilkinson, M. & Haszeldine, R.S. (2002) Fibropus illite in oilfield sandstones – a nucleation kinetic theory of growth. Terra Nova, 14, 56–60.
    [Google Scholar]
  63. Wilson, M.R., Kyser, T.K., Mehnert, H.H. & Hoeve, J. (1987) Changes in the H‐O‐Ar isotope composition of clays during retrograde alteration. Geoquim. Cosmochim. Acta, 51, 869–878.
    [Google Scholar]
  64. Worthington, P.F. (2003) Effect of clay content upon some physical properties of sandstone reservoirs. In: Clay‐Mineral Cementation in Sandstones (Ed. by WordenR. & MoradS. ), Int. Assoc. Sedimentol. Spec. Publ., 34, 191–211.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1111/bre.12074
Loading
/content/journals/10.1111/bre.12074
Loading

Data & Media loading...

  • Article Type: Research Article

Most Cited This Month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error